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Chapter 1

Introduction

The main goal of the SWASH model is to solve the nonhydrostatic, nonlinear, shallow water
equations on a regular grid.

to be filled in...

1.1 Historical background

This section is under preparation.

1.2 Purpose and motivation

The purpose of this document is to provide relevant information on the mathematical
models and numerical techniques for the simulation of shallow water in coastal regions.
Furthermore, this document explains the essential steps involved in the implementation of
various numerical methods, and thus provides an adequate reference with respect to the
structure of the SWASH program.

1.3 Readership

This document is, in the first place, addressed to those, who wish to modify and to extend
mathematical and numerical models for shallow water problems. However, this material is
also useful for those who are interested in the application of the techniques discussed here.
The text assumes the reader has basic knowledge of analysis, partial differential equations
and numerical mathematics and provides what is needed both in the main text and in the
appendices.

1



2 Chapter 1

1.4 Scope of this document

SWASH is a general-purpose numerical tool for simulating unsteady, non-hydrostatic, free-
surface, rotational flow and transport phenomena in coastal waters as driven by waves, tides,
buoyancy and wind forces. It provides a general basis for describing wave transformations
from deep water to a beach, port or harbour, complex changes to rapidly varied flows, and
density driven flows in coastal seas, estuaries, lakes and rivers.

1.5 Overview

The remainder of this document is subdivided as follows: In Chapter 2 a review of
considerations from the Hamiltonian formalism and algebraic topology of the inviscid
shallow water equations is provided. This chapter explains why the Arakawa C-grid
discretization method was chosen as the basis for the design of SWASH. In Chapter 6 the
three-dimensional shallow water equations used in SWASH are presented. These underlying
equations and the derivation thereof, i.e. the layer-averaged equations, have been discussed
earlier in the Technical documentation of TRIWAQ-in-SIMONA [72] and was written by
Marcel Zijlema in 1998. After that this outline has been applied successfully in SWASH.
See also the papers [77, 78, 57, 79]. In Chapter 7 the main characteristics of the finite
difference method for the discretization of the governing equations in horizontal planes are
outlined. Various differencing schemes for spatial propagation are reported. Chapter 8 is
concerned with discussing several boundary conditions and their implementation. Chapter 9
is devoted to the linear solvers for the solution of the resulted linear systems of equations.
Chapter 10 deals with some consideration on parallelization of SWASH on distributed
memory architectures.

This document, however, is not intended as being complete. Although, this document
describes the essential steps involved in the simulation of waves, so that the user can see
which can be modified or extended to solve a particular problem properly, some subjects
involved in SWASH are not included. Below, a list of these subjects is given, of which the
information may be available elsewhere (e.g., journal and proceedings papers):

• wave damping induced by vegetation,

• partial reflection and transmission,

• subgrid approach for 3D wave-induced currents,

• floating objects.

1.6 Acknowledgements

The SWASH team are grateful to the original authors from the very first days of SWASH
which took place at the Delft University of Technology in Delft, The Netherlands in 2002:
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Guus Stelling and Marcel Zijlema.

We further want to acknowledge all contributors who helped us to improve SWASH, reported
bugs, and tested SWASH thoroughly: Pieter Smit, Dirk Rijnsdorp, Tomo Suzuki, Panagiotis
Vasarmidis, and Joao Dobrochinski.

We are finally grateful to all those other people working on the Public Domain Software
without which the development of SWASH would be unthinkable: Linux, Intel, GNU F95,
LATEX, MPICH, Perl and many others.
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Chapter 2

Physics-compatible discretizations on
simplicial and cubical meshes

2.1 Introduction

This chapter deals with the numerical solution of the two-dimensional nonlinear shallow
water equations that form the basis for SWASH. The spatial discretization is based on the
staggered Arakawa C-grid finite difference method for orthogonal triangular, rectangular and
curvilinear meshes. It is known for a long time that this method exhibits beneficial properties
in a wide range of shallow water applications, including nonlinear wave transformation as
characterized by energy transfer between the different wave components. This enhances the
robustness of the SWASH model. This chapter explains the reasons why this is so. In the
following sections below, we will set out a number of relevant topics in depth which are
crucial for the exposition of this chapter. The topics covered are related to Hamiltonian
formalism and algebraic topology.

There are two issues that play a key role. First there is the issue of the nonlinear
computational instability that frequently occurs in the numerical simulation of highly
nonlinear shallow water systems, and secondly, the importance of primary and secondary
conservation properties that appear naturally in physics and geometry. This dual role
underlies a growing body of literature which clearly demonstrates that mimicking the
conservation properties of the continuous partial differential equations (PDEs) at the
discrete level eliminates the problem of nonlinear instability.

One of the earliest studies on nonlinear computational instability of finite difference
schemes was conducted by Phillips in the 1950s [48]. This phenomenon contrasted with
the usual (linear) stability that can easily be controlled by reducing the time step. Phillips
explained this then new kind of instability in terms of aliasing. Numerical waves shorter
than two grid sizes are misinterpreted by the finite grid as long waves and thus create
spurious interactions which, according to Phillips, cause the observed instability. Since the
nonlinear instability could not be eliminated by decreasing the time step, Phillips applied a
smoothing technique to diminish the instability.

5



6 Chapter 2

Although Phillips “aliasing” clarification could be a plausible one, however, in reality it
does not. The solution to the problem of nonlinear computational instability came from
Lilly [32] and Arakawa [1]. They demonstrated the cause of this instability to be the lack of
conservation of kinetic energy (and vorticity), despite the presence of aliasing errors. The
spectral analysis of Lilly [32] further substantiated that a correct redistribution of energy
over the scales of motion is closely related to the conservation of kinetic energy and, in turn,
eliminates the nonlinear instability. Arakawa later on showed that the staggered C-grid
approach has proven to be effective in eliminating the problem of nonlinear computational
instability [2, 3]. We will discuss this topic in detail later.

The shallow water equations involve a number of differential operators such as the
gradient and the divergence. Basically, such operators are mathematical constructs based
on the notion of limit (infinitesimal cube contracting to a point) and contain a number of
hidden geometrical and physical structures, such as symmetries and conservation properties.
The key purpose of algebraic topology in the present work is to reveal these mathematical
structures by studying geometric objects. This then forms the starting point for the
construction of discrete counterparts of the continuous differential operators, namely, the
gradient, curl, and divergence. These operators are referred to as grad, curl and div,
respectively.

While there ary many ways to approximate the PDEs and their associated operators, such
as the finite difference, finite volume, and finite element methods, algebraic topology offers a
mimetic approach to their construction in the sense that discrete operators truly mimic the
behavior of the differential operators regardless of the mesh type and resolution [23]. Such
mimetic discretizations also preserve vector calculus identities, including curl grad = 0
and div curl = 0, and symmetry relations such as curl = curlT and div = −gradT. For
instance, the latter antisymmetry property is closely related to the Hamiltonian structure
of the inviscid shallow water equations which means that the total energy of the system is
conserved. As we will see later, by embedding these discrete structures into a discretization
process, they capture the essential physics of the PDEs and can have a stabilizing effect on
the solution of PDEs.

The development of mimetic discretizations is an active field of research where it is
linked to the high demand for physically reliable simulation models to describe and predict
complex systems arising in oceanographic and atmospheric flow problems, direct numerical
and large-eddy simulations of turbulent flows, but also computer graphics. Some of the
contributions in this area have come in the form of mimetic finite differences [4, 61, 33],
the support operators method (SOM) [58, 23], mimetic spectral elements [11, 12, 29, 46],
discrete exterior calculus [21, 14, 15, 22, 38], and physics-compatible or symmetry-preserving
discretizations [49, 66, 67, 65, 6]. Such numerical techniques are especially useful when grid
refinement or increasing the order of the discretization is insufficient to resolve the wide
range of scales of nonlinear motions (e.g., high-Re turbulent flows, multi-scale atmospheric
flows, nonlinear wave-wave and wave-current interactions). Also, nonlinear energy transfer
between scales is generally respected by mimetic discretizations which not only promotes
the physical fidelity but also aids in the stability of the model simulation.

Let us put this into perspective by situating these mimetic discretizations in relation
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to other conventional finite difference and finite volume methods. The latter methods
are widely adopted for approximating the shallow water equations on horizontal grids.
Arakawa and Lamb[2] define five grid systems (A to E) based on the horizontal staggering
of the primitive variables (the velocity vector and the water level). Of these five grids,
the unstaggered (or colocated) Arakawa A-grid, the semi-staggered Arakawa B-grid and
the staggered Arakawa C-grid are the most prominent ones in CFD and computational
hydraulics. With the A-grid, the water level and the components of the velocity vector
are stored at the same grid vertices or cell centers. The B-grid places water levels at the
corners of cells and the velocity vector at the centers of cells or the other way around. The
C-grid evaluates the normal components of the horizontal velocity at the centers of the cell
faces and the water levels at the cell centers.

The usual strategy in the development of these discrete frameworks is that first a
discretization method is constructed in a mathematical fashion using high-resolution
schemes but without an explicit reference to the physical properties that underlie the
continuous flow field problem. Next, certain numerical (mostly linear) analysis tools are
utilized to prove its accuracy, stability and convergence in the sense of the Lax’s equivalence
theorem. The hope is then that a numerical solution to the considered PDEs is obtained
that is physically realistic, especially when problems with strong nonlinearities [71, 70] are
relevant. There are, however, three issues that complicate matters related to controlling
the convergence error by mesh refinement.

First, there are ambiguities regarding the validity of the equivalence theorem in the case
of nonlinear PDEs. At least, it seems that this theorem can only provide the necessary
conditions for convergence. Numerical schemes can still fail to capture physically consistent
results.

Second, a high order accurate approximation is assumed to be better in the sense that
its solution converges faster compared to a low order scheme owing to the lower truncation
errors. However, this premise is exceptional, especially when nonlinearity plays a significant
role. A key aspect of this that is often overlooked is the necessity to have mesh spacing
substantially small to achieve the nonlinear solution convergent at best.

Third, the numerical method established in this way may not obey some of the con-
servation laws, identities and symmetries and can thus act as a spurious source of mass,
momentum or energy. For example, both A-grid and B-grid discretizations ultimately build
on approximating the conservation of mass and energy [40, 16]. Furthermore, symmetry
relations, like div = −gradT, cannot be satisfied while the associated discrete operators
support spurious computational (or checkerboard pressure) modes. These unphysical modes
are typically inert at the grid scale and can contaminate the numerical solution in the long
run as various nonlinear processes, including physics parametrizations and bathymetric
forcing, can excite them [31]. Though colocated (A-grid) and semi-staggered (B-grid)
discretization methods routinely suppress erroneous grid-scale oscillations by some degree
of non-physical dissipation, either upwind differencing or space-centred approximation
with artificial viscosity, such kind of regularization usually have difficulty to moderate the
stationary spurious modes as they do not propagate.

There is a scarcity of literature that discusses the development of colocated (A-)grid
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discretizations of the inviscid shallow water equations on general meshes. By contrast,
the colocated central discretization method that employs the classical Von Neumann
and Richtmyer’s artificial viscosity [68] or its variants (e.g., the successful JST scheme
of Jameson [24]) for identifying shock waves is very useful for solving the compressible
Euler equations at high Mach numbers. This suitability is explained by the fact that the
associated physics typically involves a high energetic primary mode and relatively small
higher modes. In turn, the related nonlinear cascade of wave energy is less pronounced
than that of incompressible flows, which allows the use of less far-reaching discretization
methods, including the Lax-Wendroff type method [32] and the A-grid method.

The C-grid discretization is superior to both A-grid and B-grid regarding the accuracy
and stability in solving the highly nonlinear shallow water equations. Staggered C-grid
schemes are practically stable as they exactly conserve discrete analogues of mass and
energy and do not typically generate spurious modes. An example is the celebrated finite
difference scheme of Arakawa and Lamb [3] for the rotating shallow water equations on
Cartesian staggered grids. It does not only conserve mass and energy exactly but also
vorticity and enstrophy. Furthermore, this staggered scheme is completely free of unphysical
modes. In this sense, the Arakawa and Lamb scheme can be considered as one of the earliest
mimetic discretization methods for free surface flows.

Despite these advantages, staggered C-grid methods tend to have a low order of accuracy,
especially on nonuniform meshes. Yet, they often produce smaller global truncation errors
than other traditional (usually non-mimetic) methods of the same or higher order even on
nonuniform grids [66]. This is because of the fact that the associated discrete operators
exactly represent conservation properties (mass and energy), vector calculus identities,
including the vanishing of the curl of the gradient of any scalar field, and fundamental
symmetries, most notably the divergence is the negative transpose of the gradient. These
specific properties contribute at improving the physical accuracy of nonlinear flow and
transport problems at diverse space and time scales. In essence, they generally improve
simulation fidelity and thus potentially increase physical reliability regardless of the chosen
resolution in the simulations.

Additionally, previous studies like Manteuffel and White [34] have demonstrated that
low order schemes can achieve second order accuracy on nonuniform grids. Still, high order
acurrate schemes can be desirable when one wants to avoid the use of excessively fine
meshes, especially Cartesian grids. It should be noted, however, that unstructured mesh
methods typically do not allow for ease of implementation of high order discretizations as
they do not take full advantage of higher order accuracy that can be easily achieved on
structured rectangular grids. On the other hand, unstructured meshes have their unique
quality to easily enhance the flexibility by allowing local mesh refinements. For this reason,
we will also present an extension of the classical staggered C-grid approach to unstructured
triangular grids. This extended method is referred to as the covolume method and is
described in detail in Chapter 5.

Over the years, successful staggered C-grid schemes have been developed for the simula-
tion of incompressible flows on curvilinear staggered grids [69, 64, 76] and on unstructured tri-
angular Delaunay-Voronoi meshes [18, 44, 45, 10, 47, 26], modelling of large-scale ocean and
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small-scale coastal flows on both orthogonal curvilinear grids, see, e.g., [30, 55, 7, 53, 56, 79],
and unstructured triangular meshes, e.g. [8, 9, 17, 59, 28, 25, 27, 20, 74]. Additionally,
many papers have been published over the last few decades on the use of Arakawa C-grid
discretizations for large-scale atmospheric flows on the sphere using arbitrarily structured
(hexagonal) meshes, see, e.g., [5, 60, 62, 50, 52, 11, 61]).

This chapter provides support for a physically based strategy to develop numerical
methods that are capable of dealing with symmetries and conservation properties at a
discrete level. These methods do not discretize the continuous PDEs in the traditional
sense with scalars and vectors as fundamental entities of differential calculus. Rather, they
are driven by the topological interpretation of the physical fields as discrete differential
forms. Such forms are the integrals of the physical quantities over the various geometric
elements (points, curves, planes and volumes) and constitute a discrete representation for
solution fields over discretized (mesh) objects (vertices, edges, faces, and cells).

The notion of discrete differential forms is at the heart of algebraic topology. The frame-
work of algebraic topology provides the basis for the development of mimetic discretizations
used in this work. As we will see later on, this goal serves as the basis and justification for
using staggered grids. The importance of the discrete forms becomes apparent in identifying
which parts of the PDEs are conservation laws that do not depend on any notion of a
metric, and which parts are relationships that are approximative by nature such as the
material constitutive relations and the local relationships between the various physical
quantities due to inhomogeneous media (e.g., non-uniform depth and fluid density). The
discretizations are then constructed to exactly satisfy the former, that is, without any
discretization error involved, and accurately approximate the latter. As a result, they aim
to mimic the fundamental properties of the continuous differential operators grad, curl and
div. Furthermore, certain crucial symmetry relations, like for instance div = −gradT, are
respected at the discrete level, and these, in turn, contribute to the nonlinear computational
stability.

This chapter begins with the formulation of the inviscid nonlinear shallow water equa-
tions; they are covered in detail in Section 2.2. Next, Section 2.3 reveals the mathematical
structure of the governing equations, namely, the Hamiltonian which represents the total
energy of the system, and then deals with some theoretical aspects of the Hamiltonian
formalism. The use of the Hamiltonian form is beneficial since it provides conditions for
the stability of the spatial discretization of the shallow water equations.

Mimetic discretization methods aim to preserve essential geometrical and physical
structures in a discrete setting. The core rationale here is the agreement of the numerical
solution with physical measurements rather than convergence to an exact solution of
PDEs. As a preliminary to this approach, we informally introduce the two essential
notions of differential geometry, namely, differential forms and generalized Stokes’ theorem.
These physically based concepts are addressed in Section 2.4. This is then followed by
an extensive review of some fundamental concepts from algebraic topology, which is the
discrete counterpart of differential geometry. They serve as the building blocks of the
discretization infrastructure. Section 2.5 elaborates upon this matter.

Finally, Section 2.6 discusses a general mimetic framework for the inviscid nonlinear



10 Chapter 2

shallow water equations which will be used to derive the staggered Arakawa C-grid for
rectilinear grids in Chapter 3 and for curvilinear grids in Chapter 4, and the covolume
method for unstructured triangular meshes in Chapter 5.

This chapter (and also Chapters 3, 4 and 5) focusses on the spatial discretization in
the horizontal for both 2DH and 3D shallow water equations. Discretization in the vertical
dimension for 3D flow domains will be dealt with in Chapter 6.

2.2 Inviscid shallow water equations

(Un)SWASH solves the two- and three-dimensional nonlinear shallow water equations. These
equations describe the behavior of a shallow incompressible fluid layer and are suitable
to model hydrodynamics in coastal seas, estuaries, lakes and rivers. They are derived
from the depth-integrated Euler or Navier-Stokes equations under the hydrostatic pressure
assumption. The equations of motion are commonly written in the language of vector
calculus.

For applications to water waves we deal with the barotropic flow of an incompressible
fluid in a two-dimensional bounded domain, denoted by Ω ⊂ R2, with a thin layer of
water between a rigid bottom at z = −d(x) and a single-valued free surface ζ(x, t) where
x = (x, y) ∈ Ω indicates the horizontal position. The inviscid shallow water equations in
the flux-form are given by

∂h

∂t
+∇ · q = 0 (2.1)

∂hu

∂t
+∇ · (q⊗ u) = −gh∇ζ (2.2)

where h = ζ + d is the water depth and u = (u, v) is the depth-averaged flow velocity
vector with the components u(x, t) and v(x, t) along the x and y coordinates, respectively,
as given by

u (x, t) =
1

h

∫ z=ζ

z=−d

v (x, z, t) dz

with v(x, z, t) the three-dimensional flow velocity. Note that for water waves the three-
dimensional flow is considered to be irrotational, that is, ∇× v = 0. However, ∇× hu ̸= 0.
Furthermore, q = hu is the mass flux, ∇ = (∂x, ∂y) is the two-dimensional gradient operator
on Ω, and finally, g is the gravitational acceleration. The governing equations are combined
with appropriate boundary conditions. This is discussed in Chapter 8.

Eqs. (2.1) and (2.2) naturally describe the water wave motion on top of the ambient
flow. The essential terms here are the pressure gradient term in the right-hand side of
Eq. (2.2) and the divergence of the mass flux, the second term of Eq. (2.1). Mathematically,
they are adjoint to each other; see Section 2.3 for further clarification.

The quantity hu in the first term of Eq. (2.2) represents the depth-integrated velocity
along a path of fluid motion while the pressure gradient is a driving force due to the surface
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slope along the flow line. The second divergence term of Eq. (2.2) can be expanded as

∇ · (q⊗ u) = (q · ∇) u+ (∇ · q) u

The first term in the right-hand side describes advection in the background flow while the
second term is linked to the wave dynamics. Additionally, the combination of the terms
∇ · (q⊗ u) and gh∇ζ in the momentum equation (2.2) characterizes the embedding of the
multi-scale interactions between the various wave components.

As demonstrated above, the depth-averaged velocity u is transported by the mass flux q.
Although the reversed statement, that is, hu = q is the conserved quantity that is advected
by the velocity u, might makes sense, as suggested by Eq. (2.2), it is actually wrong from a
physical point of view. This is because hu is not the physical quantity of a fluid particle,
but instead the quantity u is, or rather v, which is also conserved by advection.

2.3 Hamiltonian formulation

In this section we demonstrate how, using the Hamiltonian formalism, we can systematically
derive conditions required for the conservation of energy that can be used to construct
mimetic discretizations of the inviscid nonlinear shallow water equations on general meshes.
Though energy is usually not preserved in the majority of coastal water systems, energy
conservation conceived as a constraint is relevant in view of the spatial discretization for
two reasons. First, it can guarantee the stability of the discretization. Second, on physical
grounds, it ensures that energy is conservatively transferred from low wave frequencies to high
frequencies, which then causes waves to break, and dissipation of wave energy. This nonlinear
energy cascade requires certain contributions to the governing equations (2.1)−(2.2) to be
independently energy conserved, namely, the pressure gradient and the advective transport
of momentum. When mimicking this requirement at a discrete level, it thus reflects the
physical fidelity of the discretization.

Like many physical systems, the inviscid, barotropic shallow water equations (2.1)−(2.2)
possess a Hamiltonian structure (see, e.g. [13]). In the absence of shocks and a horizontal
frictionless bed, this system conserves the total energy, or Hamiltonian, which is the sum of
the kinetic energy and gravitational potential energy per unit volume∫

Ω

dx

∫ z=ζ

z=−d

dz

[
1

2
u · u+ gz

]
Since the equations of motion are described using the field variables h and u, their
Hamiltonion structure is of a non-canonical (or generalized) form. This is explained further
below.

The exposition starts by first considering an infinite-dimensional real vector space V
of fields equipped with an inner product (called a Hilbert space) defined on some domain
x ∈ Ω in R2. We establish the inner product ⟨· , ·⟩ : V × V → R in the following way. We
have

⟨f, g⟩ =
∫
Ω

f g dx (2.3)
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for scalar fields f and g on Ω, and

⟨v,w⟩ =
∫
Ω

v ·w dx (2.4)

for vector fields v and w on Ω with · denoting the standard element-wise dot product. Note
that the inner product is positive definite and symmetric.

Next, a key assumption is made that the scalar and vector fields have a compact support,
that is, they vanish on the boundary of Ω. Let us integrate the following vector calculus
identity over Ω,

∇ · (fv) = f∇ · v + (∇f) · v

and subsequently apply the divergence theorem. We obtain∫
Ω

f∇ · v dx+

∫
Ω

(∇f) · v dx =

∫
Ω

∇ · (fv) dx =

∫
∂Ω

fv · dS

with the last term indicating the surface integral of fv over the boundary of Ω and dS the
surface normal. Since the boundary term is zero, we infer

⟨f,∇ · v⟩ = −⟨∇f,v⟩ (2.5)

which implies that the adjoint of the divergence operator is minus the the gradient operator.
Eq. (2.5) displays the property of skew (or anti) symmetry. A more general form of

this property that is useful to the discretization process is the following. Let be given a
real-valued operator (or tensor) A : V → V . This operator is called skew-symmetric when

⟨u, Av⟩ = −⟨Au,v⟩ , ∀u ,v ∈ V (2.6)

As the inner product is symmetric, this implies ⟨u, Au⟩ = 0 for any u ∈ V. The converse
is also true, that is, if for a given operator A, we have ⟨u, Au⟩ = 0, then this operator is
skew-symmetric. The importance of the antisymmetry relations (2.5) and (2.6) will be
discussed later in this section.

Below, we employ some relevant concepts of the Hamiltonian formalism that appear to
be useful for the analysis of conservation properties. For an introducton, see e.g. [51]. In
particular, the building blocks for a Hamiltonian formulation that might be most relevant
here are a functional, a functional derivative, and a Poisson tensor.

A functional F is a mapping F : V → R, so that its arguments are field variables which,
in turn, are functions of space and time, and it assigns a real number to them. An example
of such a functional is integration of a function. Suppose u ∈ V , then we have, for instance,

F (u) =

∫
Ω

F (x,u,∇u) dx

which yields a value of F depending on all the values taken by u on Ω, provided that the
function F is real-valued. (Note that F is an ordinary function. Also note that ∇u is
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the derivative of u with respect to x, which is the Jacobian matrix.) We use calligraphic
capitals to denote functionals.

The functional (or variational) derivative of F with respect to u, denoted δF/δu, is
defined by

lim
ϵ→0

F (u+ ϵv)−F (u)

ϵ
=

d

dϵ
F (u+ ϵv)

∣∣
ϵ=0

= ⟨δF
δu

,v⟩ (2.7)

Let us take the above example of the functional F(u). To compute its functional derivative
it is assumed that F is continuously differentiable and v vanishes on the boundary of Ω.
Upon substitution yields

d

dϵ

∫
Ω

F (x,u+ ϵv,∇u+ ϵ∇v) dx
∣∣
ϵ=0

=

∫
Ω

(
∂F

∂u
· v +

∂F

∂∇u
· ∇v

)
dx

= ⟨∂F
∂u

,v⟩+ ⟨ ∂F

∂∇u
,∇v⟩

2.5
↓
= ⟨∂F

∂u
,v⟩ − ⟨∇ ·

(
∂F

∂∇u

)
,v⟩

so that the functional derivative is

δF
δu

=
∂F

∂u
−∇ ·

(
∂F

∂∇u

)
Note that the above derivation can be generalized to higher order derivatives [41].

Let p ∈ V be a state vector of (non-canonical) field variables describing an infinite-
dimensional system. Then this system is said to be Hamiltonian if there exists a functional
H(p) and a Poisson tensor J with certain properties such that the system is represented by

∂p

∂t
= J

δH
δp

(2.8)

This formulation is called the symplectic form. Note that this is just one of the many
equivalent ways of defining Hamiltonian both for canonical and non-canonical systems.

Let us elaborate further on the Hamiltonian description of Eqs. (2.1)−(2.2). We do
this by expressing it in Cartesian tensor notation. First, we denote the momentum density
by m = (mx,my)

T = (hu, hv)T and the mass flux by q = (qx, qy)
T = (hu, hv)T. For the

current shallow-water system, a suitable Hamiltonian reads

H (h,mx,my) =
1

2

∫
Ω

[
m2

x +m2
y

h
+ gh2

]
dx dy

whose functional derivatives are

δH
δh

=
1

2

(
−
m2

x +m2
y

h2
+ 2gh

)
= −1

2

(
u2 + v2

)
+ gh ,

δH
δmx

= u ,
δH
δmy

= v



14 Chapter 2

while the associated dynamics is controlled by the following Poisson tensor [13]

J = −

 0 ∂xh ∂yh
h ∂x mx ∂x + ∂xmx my ∂x + ∂ymx

h ∂y mx ∂y + ∂xmy my ∂y + ∂ymy

 (2.9)

Like the Hamiltonian formulation, there are many known forms of the Poisson tensor. The
current tensor is of the Lie-Poisson form which means that it (a) is linear in the state vector
(p1, p2, p3)

T ≡ (h,mx,my)
T, (b) is skew-adjoint (or skew-symmetric), Jij = −Jji, and (c)

satisfies the Jacobi condition [51, 13]

Jil
∂Jjk
∂pl

+ Jjl
∂Jki
∂pl

+ Jkl
∂Jij
∂pl

= 0

for i, j, k, l = 1, . . . , 3 (the Einstein convention is used). With the help of the antisymmetry
relation (2.5), it can be verified that the above three conditions are indeed met by the
tensor given by Eq. (2.9).

Now, if we use the components of the vector (hu, hv)T instead of (mx,my)
T, then

expanding the symplectic form in terms of the field variables h, hu and q results in

∂

∂t

 h
hu
hv

 = −

 0 ∂xh ∂yh
h ∂x hu ∂x + ∂xuh hv ∂x + ∂yuh
h ∂y hu ∂y + ∂xvh hv ∂y + ∂yvh

gh− 1
2
(u2 + v2)
u
v



=

 −∂xqx − ∂yqy
−gh∂xh− ∂x (uqx)− ∂y (uqy)
−gh∂yh− ∂x (vqx)− ∂y (vqy)


which are indeed the shallow water equations (2.1)−(2.2), provided that the bed is uniform.

For our purposes, we want to show that the Hamiltonian is conserved at all times.
To this end we consider a functional F(p) and examine variation of p to t, namely,
δp = p(x, t + δt) − p(x, t), so that in the limit δt → 0, we have δp = δt ∂p/∂t. Recall
Eq. (2.7), then one has

lim
δt→0

F (p+ δp)−F (p)

δt
=

dF
dt

= ⟨δF
δp

,
∂p

∂t
⟩

which describes the time evolution of F . Owing to Eq. (2.8) we observe that

dF
dt

= ⟨δF
δp

, J
δH
δp

⟩

Since J is skew-symmetric we conclude that

dH
dt

= ⟨δH
δp

, J
δH
δp

⟩ = 0
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implying the conservation of the Hamiltonian. This is basically a rendition of a special
case of the classical Noether’s theorem that relates the symmetry of a Hamiltonian system
under translation in time to the conservation of energy.

Let us examine the time evolution of the total energy of the conservative shallow-water
system in detail. We first discuss the contributions to the kinetic energy balance, followed
by those of the gravitational potential energy. The total kinetic energy is

Hkin =
1

2

∫
Ω

hu · u dx =
1

2
⟨u, hu⟩

while its rate of change is given by

dHkin

dt
= ⟨δHkin

δp
,
∂p

∂t
⟩ = ⟨δHkin

δh
,
∂h

∂t
⟩+ ⟨δHkin

δm
,
∂m

∂t
⟩

Evaluating the functional derivatives as δHkin/δh = −1
2
u · u and δHkin/δm = u and

substituting Eq. (2.2) into the above equation yield

d

dt
1
2
⟨u, hu⟩ = −1

2
⟨u,u ∂h

∂t
⟩ − ⟨u,∇ · (q⊗ u)⟩ − ⟨q,∇gh⟩

where it is assumed that the bed is uniform. The last term converses kinetic energy into
potential energy.

Next, the total gravitational potential energy reads

Hpot =
1

2

∫
Ω

gh2 dx =
1

2
g ⟨h, h⟩

The associated variational derivatives are then δHpot/δh = gh and δHpot/δm = 0. The
rate of change of potential energy is determined by the following expression

d

dt
1
2
g ⟨h, h⟩ = ⟨δHpot

δh
,
∂h

∂t
⟩+ ⟨δHpot

δm
,
∂m

∂t
⟩ = −⟨gh,∇ · q⟩

Finally, the total energy is given by

H =
1

2
⟨u, hu⟩+ 1

2
g ⟨h, h⟩

The two contributions above can be combined into the equation of total energy as

0 =
dH
dt

= −1
2
⟨u,u ∂h

∂t
⟩ − ⟨u,∇ · (q⊗ u)⟩ − ⟨∇gh,q⟩ − ⟨gh,∇ · q⟩

By virtue of Eq. (2.5), the last two terms essentially cancel each other out, leaving only the
first two terms while their sum must be zero. This result can be written as

⟨u, 1
2

∂h

∂t
u+∇ · (q⊗ u)⟩ = 0
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Let us define the operator A with

Au := ∇ · (q⊗ u)

and denote I as the identity tensor. (Note that we may write A = q · ∇+ (∇ · q) I.) Now,
the following must holds

⟨u,
[
A+ 1

2

∂h

∂t
I

]
u ⟩ = 0

which implies that the operator

A+ 1
2

∂h

∂t
I

must be skew-symmetric. To accomplish this, the tensor A may be expressed as

A = 1
2
C − 1

2
CT − 1

2

∂h

∂t
I (2.10)

or, alternatively,
A = 1

2
C − 1

2
CT + 1

2
(∇ · q) I (2.11)

so that C is a skew-symmetric tensor. (An arbitrary tensor C can be written as the sum of
two parts, one symmetric, the other skew-symmetric: C = 1

2
(C +CT) + 1

2
(C −CT). If C is

skew-symmetric, then the symmetric part is identically zero.)
We conclude this section by pointing out that an envisaged semi-discretization method

should also possess a Hamiltonian structure not only to ensure its computational stability but
also to respect the conservative cascade of energy from large to small scales through nonlinear
interactions. This is particularly significant for describing nonlinear wave transformation
in coastal regions. In this respect, some terms in the shallow water equations should also
be individually energy conserving, namely, the pressure gradient term and the advection
terms.

Conservation of energy by the pressure gradient term requires skew symmetry of the
associated operator. More specifically, a discrete analogue of Eq. (2.5) is needed regarding
the pressure gradient ∇gh and the divergence of mass flux ∇ · q. In Section 2.5, we will
show how this desired mimetic property can be constructed by using the techniques from
algebraic topology.

Additionally, skew symmetry should also be taken into account when discretizing the
divergence term ∇ · (q⊗ u) in the momentum equation (2.2), as indicated by Eq. (2.10).
However, to include the shock formation as manifested in hydraulic jumps and tidal bores,
some form of energy dissipation must be added. We will return to this matter in Chapter 3.

2.4 Differential forms and the Stokes’ theorem

The purpose of this section is to present a brief introduction to some of the main concepts
of differential geometry and to demonstrate their utility for the development of a numerical
method for the solution of the shallow water equations on general meshes. These include
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the differential forms, the exterior derivative and the generalized Stokes’ theorem [4, 15, 43].
Their discrete counterparts will be elucidated in detail in Section 2.5 which form the starting
point for the mimetic discretizations of Chapter 3, 4 and 5.

The equations presented in the previous sections are expressed in terms of vector calculus.
The fundamental attributes are the scalar and vector fields. A field variable is a local
function that describe the variable at each point in space (and at each instant in time, but
we will not consider that here; see, e.g. [63]). This is also called a density and is essentially
the result of a limit process. For example, mass density, denoted as ρ(x, t), is the result of
the ratio of an infinitesimally small mass δm to an infinitesimally small volume δV while
taking the limit δV → 0. Obviously, such a scalar field does not make sense physically,
since a zero volume would contain no mass. It is a pure mathematical concept resulted
from the process of limit.

By contrast, differential forms are defined informally as physical variables that are
associated with a geometrically finite object, such as a curve, plane or volume. For example,
we can express mass as

m =

∫
V

ρ dV

which has a clear physical meaning irrespective of the size and shape of volume V . So, here
mass is defined as a volume integral and the quantity ρ dV is called a differential form.

Another example is the mass flux density which is defined as

lim
δS→0

ṁ

δS

with ṁ = dm/dt the mass flow rate and δS the infinitesimal area through which the mass
flows. This mathematically well-defined quantity is by itself physically meaningless: it only
provides a local measure of the mass current per unit cross area emanating from a point in
space.

Another view is that the mass flux density is a vector field, denoted q = ρu where u is
the flow velocity vector, and the integral of this flux over a cross section S yields the total
amount of mass passing through the cross section in a unit of time. The surface integral is
expressed as ∫

S

q · dS

where dS is the surface element pointing outward normal to the surface. Here, q · dS
represents the mass flux and is physically defined for any size and shape of section S. This
physical quantity is another example of a differential form. Note, however, that by Gauss’
divergence theorem in vector calculus, one has∫

V

∇ · q dV =

∮
∂V

q · dS

which provides a geometric interpretation of the divergence operator ∇· in the sense that
integrating this operator over a finite volume yields the total flux through the volume
boundaries.
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Quantity ρu can also be interpreted as the mass circulation density and is identified
with the curl of ρu at a single point: ∇× ρu. Indeed, by Stokes’ curl theorem, if A is a
finite surface in R2 and dl is a curve element locally tangent to the boundary of A, then
the total circulation of the vector ρu around the perimeter of A is computed as∮

∂A

ρu · dl =
∫
A

(∇× ρu) · dA

Thus, mass circulation is symbolized by the differential form ρu · dl integrated on a finite
line segment.

There are also, however, quantities that can be sampled at single locations, such as
surface elevation, bed level and dynamic pressure. These are differential forms associated to
a spatial point. Such forms commonly manifest themselves as the argument of the gradient
operator ∇. This is clarified by the fundamental theorem of calculus for line integrals. Let
π : R2 → R be a differentiable function given on a continuous curve ℓ ⊂ R2 that starts at
point p and ends at point q. Then the integral of the gradient of π over the curve ℓ is equal
to the total change in π between the two endpoints of ℓ, that is,∫

ℓ

∇π · dl = π(q)− π(p)

Differential forms are characterized by the dimension of the underlying geometric objects.
A differential k−form integrates over a k−dimensional smooth (infinitely differentiable)
manifold embedded in a n−dimensional space (k = 0, 1, . . . , n), and takes this to R. For
instance, in R3 there are four types of differential forms, that is, 0−, 1−, 2− and 3−forms,
associated with points, curves, planes and volumes, respectively. It is important to note
that unlike scalar and vector fields, differential forms are independent of coordinate systems
and metric (e.g., length, area, angle).

In what follows, forms are denoted by lower case Greek letters with the superscript
indicating the dimension. Hence, referring to the first example above, µ(3) = ρ dV is a
3−form which is a scalar. In the case of the flow velocity vector, there are two distinct
differential forms, namely, the 2−form ϕ(2) = q · dS, that is, the normal to a plane, and
the 1−form γ(1) = ρu · dl, which is the vector tangent to a curve. And in the last example,
function π is a 0−form, π(0) = π, which trivially gives a scalar.

The calculus of differential forms is based on the exterior derivative and the generalized
Stokes’ theorem which extend the notion of differentation and integration, respectively, to
arbitrary dimensions. Let d denotes the exterior derivative and let α(k) be a k−form defined
on some manifold M of dimension k. The exterior derivative of α(k) is a (k + 1)−form
that is written as dα(k), for k = 0, 1, . . . , n− 1. Indeed, the action of exterior derivative on
differential forms provides us a coordinate invariant way to calculate the gradient, curl and
divergence operators of vector calculus. For example, dα(0) is the same as the gradient of
a scalar and the result is a 1−form, which represents a tangential component of a vector.
Likewise, dα(1) and dα(2) are equivalent to the curl of a vector (tangent to a curve) and
the divergence of a vector (normal to a plane), respectively. The result of the former is a
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2−form, which is actually the normal component of a vector, while the result of the latter
is scalar, a 3−form.

As we have seen in the above examples, the gradient, curl and divergence operators can
be linked to the corresponding geometric objects (curve, plane and volume, respectively)
with lower-dimensional boundaries (points, curves and planes, respectively) by means of
the corresponding integral theorems (the fundamental theorem of calculus for line integrals,
the Stokes’ curl theorem and the Gauss’ divergence theorem, respectively). In the same
vein, the exterior derivative can be connected to a (k + 1)−dimensional manifold M with
k−dimensional boundary ∂M through the generalized Stokes’ theorem, which is stated in
the following very elegant and simple formula∫

M
dα(k) =

∫
∂M

α(k)

for a given k−form α(k). This theorem equates the integral of the exterior derivative of
a form on a manifold to the integral of this form on the boundary of the manifold. We
observe that the three key theorems of vector calculus as outlined above are all special
cases of the generalized Stokes’ theorem.

Differential forms are the essential building blocks in the study of differential geometry
[43]. This mathematical language allows one to express differential forms on smooth and
curved manifolds in a consistent manner, not dependent on a coordinate system. But most
relevant to our discussion is that the use of differential forms is motivated by the physical
fact that the measurements of physical quantities, e.g., mass, mass circulation, mass flux,
pressure, are typically linked to integration over geometrically finite manifolds. As such,
differential forms naturally lend themselves to a discrete representation. In particular,
different global variables can be represented as coordinate-free discrete differential forms
integrated on different mesh elements (vertices, edges, faces and cells). This is the approach
that we will use in the discrete setting.

Consider a three-dimensional computational mesh which consists of vertices, edges, faces
and volumes. Let a vertex, an edge, a face and a cell be denoted by σ(k) with k = 0, 1, 2, 3,
respectively. A discrete k−form is defined as the integral of a k−form over a k-dimensional
mesh element σ(k), symbolized by ∫

σ(k)

α(k)

and yields a single real number associated with σ(k). Note that the discrete form is the whole
integral quantity, not the integrand as with differential forms. In this way, we distinguish
between 0-forms represented by their values at a set of vertices, 1-forms by their line
integrals over a set of edges, 2-forms by their surface integrals over a set of faces, and
3-forms by their volume integrals over a set of cells. We use from now on Greek letters for
discrete forms, that is, π(0) for the pressure at a vertex, γ(1) for the mass circulation along
a mesh edge, ϕ(2) for the mass flux through a mesh face, µ(3) for the mass in a cell, etc.

It is also apparent that the discrete forms serve as the degrees of freedom for our
numerical framework, rather than grid point values as used in finite difference methods
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or cell averages in finite volume methods. Since these forms are topological, that is,
independent of metric, the intended numerical method can easily be extended to any type of
computational meshes embedded in two-dimensional Euclidean spaces, including rectilinear
meshes (Chapter 3), curvilinear meshes (Chapter 4) and triangular meshes (Chapter 5).

The generalized Stokes’ theorem reveals that differential forms and integral theorems
are intimately connected. More specifically, the integration of a differential form, or the
discrete form for that matter, can be used to establish any of the differential operators
such as gradient, curl or divergence. This is illustrated by Figure 2.1 that shows the three
fundamental theorems with which the integral of the corresponding differential operator

Figure 2.1: The evaluation of the gradient operator along a line segment by means of the
discrete 0−forms at the two endpoints as per the fundamental theorem of calculus for
line integrals (left), the curl operator in a triangle by summing the discrete 1−forms over
the triangle edges using the Stokes’ curl theorem (center), and the computation of the
divergence in a cube is the same as taking the sum of the discrete 2−forms on the six faces
according to the Gauss’ divergence theorem (right). The displayed arrows indicate the
orientation of the geometric object; see Section 2.5.2 for further discussion.

over a finite geometric object is computed by a direct evaluation of the associated discrete
form over the boundary of that object. This observation is the central theme for the mimetic
discretizations used in this work. In the next section, we will apply the Stokes’ theorem
to construct a discrete counterpart of the exterior derivative, with which the continuous
differential operators, grad, curl and div can then be mimicked at the discrete level.
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2.5 Basic concepts of algebraic topology

2.5.1 Introduction

This section concerns with some of the essential definitions and tools of algebraic topology
for two-dimensional manifolds. They establish a formalization of the notion of discretization
of physical space in which physical laws are embedded. This formalism lay the foundation
of the numerical framework of SWASH in the next sections.

Algebraic topology is a branch of mathematics that essentially deals with the study of a
manifold (a geometric object) which is encoded by means of the (graph) connectivity. In turn,
algebra and discrete boundary relations determined by this connectivity are employed to find
topological invariants and symmetries of the manifold implied by differential geometry. As
we will see later on, it defines a clean separation between the process of exact discretization
of physical conservation properties and the process of approximation of constitutive relations
that should be implemented anyway. Original ideas about this approach were proposed two
decades ago by [35, 54, 36, 63].

A good introduction to algebraic topology is provided by [42]. Somewhat more abstract
is the book of [19].

2.5.2 Cell complex and orientation

A manifold is a topological space living in n−dimensional Euclidean space Rn that is
equipped with a topological structure to allow defining mappings of (sub)manifolds, but not
measured by a metric. Such a structure refers to the essential relationships that describe
the connectivity between geometric objects and the integral relations that underlie certain
invariant and symmetry properties.

A finite dimensional manifold that we will consider here is a computational mesh. It
provides a means of partitioning a computational domain Ω ⊂ Rn into a collection of
distinct geometric objects (or submanifolds) called k−cells with k = 0, 1, . . . , n indicating
their spatial dimension. The associated mesh is thus discretely represented by a finite
collection of vertices (0−cells), edges (1−cells), faces (2−cells) and cells (3−cells).

A k−cell is denoted by σ(k) and its size or (intrinsic) volume is denoted |σ(k)|. We
define |σ(0)| = 1. The collection of k−cells is a subset of Rn, denoted Mk, and is called a
k−dimensional manifold. This manifold is assumed to have a boundary. The boundary of
a k−cell, denoted ∂σ(k), is made up of (k − 1)−cells that are directly connected to. These
lower dimensional cells are elements of Mk−1 (k = 1, . . . , n) and are referred to as the faces
of the k−cell. Note that the boundary of a 0−cell is empty. The set {M0, . . . ,Mn} is
called the mesh.

A cell complex K on Ω is a finite set of k−cells, with k = 0, 1, . . . , n, such that (i) the
n−cells cover Ω, (ii) each face of a k−cell of K is in K, and (iii) the intersection of any two
k−cells of K is either a face of each of them or is empty. We simply write the cell complex
as K = {M0, . . . ,Mn}, which is a mesh. Note that the converse is not necessarily true (see
below). Figure 2.2 illustrates an example of a cell complex in a two-dimensional domain.
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Figure 2.2: Example of a two-dimensional cell complex with labeled 0−cells (vertices),
1−cells (edges) and 2−cells (faces). The 2−cells, i.e. computational cells, are a mixed of
triangles and rectangles.

Manifolds are also endowed with an orientation which is a key element for identifying
the conservation properties in the construction of mimetic discretizations. Two types of
orientation can be distinguished for a manifold Mk: inner and outer orientation. The
first type defines the orientation in the geometric object, while the second designates the
orientation outside the geometric object embedded in space Rn.

Every k−cell is oriented and has exactly two directions. In this work, we choose a
positive orientation according to the right-hand rule. Consequently, the other is negative.
In particular, an inner-oriented 0−cell is positively oriented as a sink (into the vertex), an
inner-oriented 1−cell is oriented by a direction, pointing to the right, along the edge, an
inner-oriented 2−cell by a sense of rotation, in the counterclockwise direction, on its face
and an inner-oriented 3−cell by a right-handed screw inside its cell. Additionally, the inner
orientation on ∂σ(k) is induced by σ(k). It is important to note that the inner orientation
on a k−cell is identical for each such cell embedded in an n−dimensional space.

Outer orientation, on the other hand, depends on the dimension of the embedding
space. The outer orientation specifies, for instance, a transverse direction through a vertex
embedded in R1, across an edge in R2 and through a face for a 3D embedding space.
Here, a positive orientation is the one implied by the orientation of the embedded space
that is equipped with a right-handed coordinate system in Rn. Another example is a
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counterclockwise rotation around a vertex or an edge embedded in R2 and R3, respectively.
Finally, the outer orientation of an n−cell in Rn is induced by the outer orientation of its
faces with outward normals. Thus, the same geometric object has different types of outer
orientation depending on the dimension of embedding space Rn.

The concept of inner and outer orientation gives rise to a pair of meshes embedded in
Rn, each endowed with a different type of orientation. Moreover, they are topologically dual
to each other in the sense that an inner-oriented k−cell corresponds to an outer-oriented
(n− k)−cell, and vice versa. The former is referred to as the primal mesh, denoted K, the
latter is called the dual mesh, denoted K̃. We will use the tilde throughout this chapter
to indicate a dual object. Here, K is inner oriented while K̃ is outer oriented, but this
is merely a choice and either choice is equally fine. What is important is that all of the
k−cells in one particular mesh must have the same type of orientation (i.e. inner or outer).
Figure 2.3 depicts a graphical representation of the orientation of the various primal and
dual cells in a 2D space.

(a) k−cells with inner orientation.

(b) (2− k)−cells with outer orientation.

Figure 2.3: Oriented primal cells (a) and dual cells (b) embedded in R2.

The computational mesh is an oriented cell complex K that covers the domain Ω. This
mesh is designated as the primal mesh. We denote by K̃ its associated dual mesh. However,
not all faces of the (n− k)−cells in K̃ (for k = 1, . . . , n) are contained in K̃. Nevertheless,
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as we will see later, the dual mesh is not required to be a cell complex in our discretization
method. Also, it does not need to be created or stored explicitly − only its metric will be
computed. This will be elaborated in detail in Section 2.5.7.

2.5.3 The computational mesh and its dual

The topology of the computational mesh is routinely described by means of simplices
(e.g., triangles, tetrahedrons) or cuboids (e.g., quadrilaterals, hexahedrons). One should
note, however, that both descriptions, though topologically equivalent, are geometrically
different; see Section 2.5.7. The present work is entirely devoted to polygonal meshes in
(x, y) ∈ Ω ⊂ R2 even though the space dimension n is kept general in the present exposition.
Here, mesh edges are straight lines and mesh faces are planar. Note that, although there is
no difference between the edge and the face of a 2D mesh, their distinction will nevertheless
clarify the derivations to be presented.

A polygonal mesh consists of a finite number of polygons. A polygon is said to be cyclic
if it can be inscribed in a circle, that is, if there exists a circle so that every vertex of the
polygon lies on the circle. This circle is called the circumcircle. For example, all triangles
and all rectangles are cyclic. The center of the circumcircle is known as the circumcenter
and can be found as the intersection of the perpendicular bisectors of the edges of the
polygon.

A polygon is well centered if its circumcenter is contained in its interior. A well-centered
computational mesh has all of its polygonal cells that are well centered. For example,
an acute triangulation is well centered. The mesh constructed by joining the primal cell
circumcenters is called the circumcentric dual mesh. Any well-centered primal mesh and
its dual are mutually orthogonal. A classic example is the Delaunay triangulation (primal
mesh) and the associated Voronoi tessellation (dual mesh).

Rectangular and curvilinear meshes are always well centered. This is not necessarily
true for triangular cells. In particular, the circumcenter of a right-angled triangle lies at
the midpoint of the hypotenuse and the circumcenter of an obtuse triangle lies outside the
triangle. We will come back to this issue later on.

An alternative would be the use of the barycentric dual mesh. This mesh is formed by
connecting the cell centroids and the edge midpoints. The barycentric dual mesh greatly
facilitates flexibility in mesh generation and also in adaptive mesh refinement. However,
the lack of orthogonality between the primal edges and their barycentric duals generally
increases the complexity of the discretization [21, 37, 38, 39] and may additionally affect
the numerical stability.

As will be demonstrated in Section 2.5.7, the circumcentric dual mesh is the preferred
one as it allows for computationally tractable and stable discretizations. For the present
SWASH applications, only orthogonal rectangular grids (Chapter 3), orthogonal curvilinear
grids (Chapter 4) and Delaunay triangular meshes (Chapter 5) are considered.
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2.5.4 Chains and boundary operator

Let Ck(K) be a group generated by a basis consisting of all the k−cells of cell complex K.
An element of Ck(K) is called a k−chain and is a linear combination of oriented k−cells,

c(k) =
∑
i

ci σ(k),i

where σ(k),i is the ith k−cell in Mk and ci ∈ {−1, 0, 1} is the ith component of c(k). The
k−cells form the canonical basis for the vector space of k−chains. The dimension of Ck(K)
equals the number of elements of Mk and is written as |Ck|. A k−chain c(k) is represented
as a row vector of length |Ck|. Furthermore, integer component ci of c(k) refers to the
orientation of the cell in the chain with respect to its default orientation in cell complex K
(positive if they agree or negative if they disagree) or to the cell not being a part of the
chain, that is, ci = 0. Note that a k−cell is also named as an elementary k−chain.

Just like the boundary of a k−cell is an element of Mk−1, so is the boundary of a
k−chain, denoted ∂c(k), an element of Ck−1(K). In this regard, we define the boundary
operator as a linear operator ∂k : Ck(K) → Ck−1(K) which returns a (k − 1)−chain after
applying to the k−chain,

∂kc(k) = ∂k
∑
i

ci σ(k),i :=
∑
i

ci ∂kσ(k),i

with ∂kσ(k),i the boundary of σ(k),i which is a (k−1)−cell formed by the faces of the oriented
k−cell, as follows

∂kσ(k),i =
∑
j

oi,j σ(k−1),j (2.12)

where oi,j equals +1 if σ(k−1),j ∈ Mk−1 and the orientations of σ(k−1),j and σ(k),i agree, −1
if these orientations disagree, or 0 if σ(k−1),j is not a face of σ(k),i. Hence,

∂kc(k) =
∑
i

∑
j

ci oi,j σ(k−1),j (2.13)

The boundary operator has the important property that the boundary of a boundary is
empty, so that using the boundary operator twice to any k−chain gives a null value, that
is, ∂k−1∂kc(k) = 0 , ∀c(k) ∈ Ck(K). The boundary operator is called nilpotent.

Given a basis for the vector spaces Ck(K) and Ck−1(K), the boundary operator is
represented as an incidence matrix Dk of size |Ck| × |Ck−1|. Each row corresponds to each
element of Ck(K) and each column to each element of Ck−1(K). Owing to Eq. (2.12), the
entries of the matrix are given by

[Dk]i,j = oi,j , k = 1, . . . , n (2.14)

An entry is −1 or +1 (the sign depending on the orientation) if an element of Ck−1(K) is
incident with an element of Ck(K), or 0 if they are not related. Thus the action of boundary
operator ∂k on a chain c(k) amounts to the matrix-vector multiplication c(k)Dk, which is a
row vector of length |Ck−1|. We note that c(k) Dk Dk−1 = 0T , ∀c(k) ∈ C(k)(K) , k = 2, . . . , n.
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2.5.5 Cochains and coboundary operator

The vector space of chains Ck(K) of cell complex K coexists with a dual vector space of
linear functions γ(k) : Ck(K) → R. This dual space is denoted by Ck(K) and its elements
are called k−cochains. Let c(k) be the k−chain of K and γ(k) the k−cochain of K. We
write

⟨c(k), γ(k)⟩ := γ(k) (c(k) ) ∈ R

for the value of γ(k) on c(k). This linear mapping is called the duality pairing of k−cochain
with k−chain. As it will be clear shortly, the notion of duality pairing between cochains
and chains plays a centrol role in the discretization process.

Given a basis of Ck(K), {σ(k),i | i = 1, . . . , |Ck|}, there is a dual basis of Ck(K),
{σ(k),i | i = 1, . . . , |Ck|}, such that

⟨σ(k),j, σ
(k),i⟩ = δij

so that the ith elementary k−cochain is associated with the ith k−cell only. By linearity, a
k−cochain γ(k) ∈ Ck(K) can be expressed as

γ(k) =
∑
i

γiσ
(k),i

and is represented as a column vector with its components γi ∈ R. The length of this vector
is |Ck|. Duality pairing of a k−cochain γ(k) with a k−chain c(k) can now be calculated as

⟨c(k), γ(k)⟩ =
∑
i

∑
j

cjγi⟨σ(k),j, σ
(k),i⟩ =

∑
i

∑
j

cjγiδ
i
j =

∑
i

ciγi = c(k) γ
(k)

This duality pairing is a metric-free operation. (This is not the inner product of Section 2.3
because c(k) and γ(k) are not defined in one single vector space.)

A k−cochain acts as a function that associates to every k−chain of K a discrete real
number that is independent of any coordinate system. In particular, the value

⟨σ(k),i, γ
(k)⟩ = γi

is a coordinate-free scalar evaluated on the ith k−cell. This function evaluation is interpreted
as the geometric integration of γ(k) over the k−cell of cell complex K. The integral of γ(k)

over an inner-oriented k−cell is symbolized by∫
σ(k)

γ(k) := ⟨σ(k), γ
(k)⟩

and is referred to as an inner-oriented k−form, or inner k−form for short. By linearity, the
integral of γ(k) over a k−chain can be calculated as∫

c(k)

γ(k) =
∑
i

ci
∫
σ(k),i

γ(k) =
∑
i

ci⟨σ(k),i, γ
(k)⟩ =

∑
i

ciγi = ⟨c(k), γ(k)⟩
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Let c(k+1) be a (k + 1)−chain of cell complex K, then its boundary ∂k+1c(k+1) is a
k−chain. Here, the orientation on ∂k+1c(k+1) is induced by c(k+1). The adjoint of this
boundary operator with respect to the duality pairing ⟨·, ·⟩ is called the coboundary
operator δk and is defined by

⟨c(k+1), δ
kγ(k)⟩ = ⟨∂k+1c(k+1), γ

(k)⟩ , ∀c(k+1) ∈ Ck+1(K) , ∀γ(k) ∈ Ck(K)

The coboundary operator δk : Ck(K) → Ck+1(K) is a linear operator that relates a
k−cochain to a (k + 1)−cochain. The above adjoint relation can also be written in the
following integral form ∫

c(k+1)

δkγ(k) =

∫
∂k+1c(k+1)

γ(k)

which can be viewed as the discrete counterpart of the generalized Stokes’ theorem. The
operator δk is also called the kth discrete exterior derivative. Recall that the three theorems
of vector calculus, namely, the fundamental theorem of calculus for line integrals, the
Stokes’ curl theorem and the Gauss’s divergence theorem (cf. Figure 2.1) are a special case
of the generalized Stokes’ theorem applied to oriented 0−forms, 1−forms and 2−forms,
respectively, in R3. This observation is key in constructing the mimetic discretization of
continuous differential operators grad, curl and div.

The operator δk can be expressed as an incidence matrix Dk of size |Ck+1| × |Ck| so that
the action of Dk on a cochain γ(k) is the matrix-vector multiplication Dkγ(k). Matrix Dk is
the adjoint of matrix Dk+1, which can be demonstrated by the above theorem, namely,

c(k+1)Dkγ(k) = c(k+1)Dk+1γ
(k)

which implies Dk = Dk+1 for k = 0, . . . , n− 1.
By virtue of the duality pairing between the boundary operator and coboundary operator,

the discrete exterior derivative is a metric independent operator, which additionally has the
property that

Dk+1 Dk = 0T , ∀k = 0, . . . , n− 2

reflecting the nilpotency of the coboundary operator, that is, δ(k+1) δ(k) = 0.
Let us choose an inner orientation for cell complex K in R2. Then the discrete exterior

derivative represents an exact discretization of grad if k = 0 and curl if k = 1 such that
the Stokes’ theorem holds for the associated inner-oriented k−cells (cf. left and center
panels of Figure 2.1, respectively). In addition, we have that D1D0 = 0T, which implies
curl grad = 0 (the curl of a gradient is zero). Exact representation of this vector calculus
identity is crucial for a physics-compatible and stable numerical scheme.

2.5.6 The dual mesh: discrete k−forms and exterior derivative

The notions of chains, the boundary operator, discrete forms and the discrete exterior
derivative can also be applied on the dual mesh. Let K be a primal mesh (or cell complex)
and K̃ the associated dual mesh on Ω ⊂ R2. Remember that the dual mesh is not a cell
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complex, but we omit this feature here for simplicity as it does not change the exposition
in the following.

There exists a bijective map between the dual mesh elements and the primal ones,
namely, each (n− k)−cell of the dual mesh is dual to a primal k−cell, for k = 0, . . . , n. We
denote the dual of k−cell by σ̃(n−k) and the map by ⋆, that is, ⋆σ(k) = σ̃(n−k). The set of

dual cells is denoted by M̃n−k. The dual mesh is then given by K̃ = {M̃n, . . . ,M̃0}. In
line with the choice of primal mesh K in Section 2.5.2, K̃ is outer oriented. Recall that the
outer orientation of a dual cell depends on the dimension of the embedded space Rn.

We denote the vector space of dual k−chains by Cn−k(K̃) and its canonical basis
by {σ̃(n−k),i | i = 1, . . . , |Ck|}. Similarly, we have the space of dual k−cochains, denoted

Cn−k(K̃), generated by its dual basis {σ̃(n−k),i | i = 1, . . . , |Ck|}. The elements of Cn−k(K̃)
are the dual discrete forms by which an outer (n− k)−form is dual to an inner k−form.

The boundary of an outer-oriented cell σ̃(n−k+1) of the dual mesh, with k = 1, . . . , n,
constitutes a number of connected faces σ̃(n−k), for which not all of them are in the mesh.

By duality, we have the dual boundary operator ∂̃n−k+1 : Cn−k+1(K̃) → Cn−k(K̃) obtained
as follows

∂̃n−k+1σ̃(n−k+1),i =
∑
j

õi,j σ̃(n−k),j , i = 1, . . . , |Ck−1| , j = 1, . . . , |Ck|

with õi,j indicating the outer orientation of σ̃(n−k) induced by σ̃(n−k+1) (+1 if they agree,
−1 if they disagree, and 0 otherwise). This orientation coefficient is related to that on the
primal mesh, viz. Eq. (2.12), according to

õi,j = (−1)k oj,i , ∀k = 1, . . . , n (2.15)

Here the sign coefficient follows from Figure 2.3. In particular, the orientation of the
inner-oriented 0−cell is the opposite of the orientation of the outer-oriented 2−cell while
those of the 1−cells have the same orientation.

The coefficients õi,j constitute an incidence matrix D̃n−k+1 of size |Ck−1| × |Ck| that
represents the dual boundary operator ∂̃n−k+1. Eq. (2.15) is used to establish the relationship
between the primal and dual boundary operators as follows

D̃n−k+1 = (−1)k (Dk)
T , k = 1, . . . , n

Clearly, on the dual mesh we also have D̃k D̃k−1 = 0 , ∀k = 2, . . . , n.
A dual coboundary operator can be defined analogously. The dual coboundary operator

δ̃n−k−1 : Cn−k−1(K̃) → Cn−k(K̃) is the adjoint of the dual boundary operator ∂̃n−k based
on the generalized Stokes’ theorem

⟨c̃(n−k), δ̃
n−k−1γ̃(n−k−1)⟩ = ⟨∂̃n−kc̃(n−k), γ̃

(n−k−1)⟩

for all c̃(n−k) ∈ Cn−k(K̃) and γ̃(n−k−1) ∈ Cn−k−1(K̃). Note that, by virtue of the duality
pairing, the dual cochain γ̃(n−k−1) is an outer form that is integrated over the outer-oriented
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boundary of c̃(n−k). The dual coboundary operator is represented by a |Ck| × |Ck+1| matrix

D̃n−k−1 and is given by

D̃n−k−1 = (−1)k+1
(
Dk

)T
, k = 0, . . . , n− 1

since D̃n−k−1 = D̃n−k (and Dk = Dk+1) as per the Stokes’ theorem. Additionally, we have
D̃k+1 D̃k = 0 , ∀k = 0, . . . , n− 2.

By virtue of the Stokes’ theorem, the discrete exterior derivative defined on the dual
mesh is the same as the dual coboundary operator. The operator D̃n−k−1 turns an integral
over a dual k−cell into a boundary integral, that is, over the boundary of the dual k−cell,
and maps a discrete outer (n − k − 1)−form to a discrete outer (n − k)−form. For
example, D̃n−1 acting on the outer (n − 1)−form, that is, the flux through a mesh face,
yields an outer n−form (volume form). This is exactly the application of the divergence
theorem and operator D̃n−1 is thus identified with the operator div (cf. right panel of
Figure 2.1). Furthermore, we observe that D̃n−1 = −(D0)T which is the discrete version of
the antisymmetry relation div = −gradT. As demonstrated in Section 2.3, this property
plays a vital role in developing a physically consistent and stable numerical scheme.

Another form of symmetry is found for k = 1, namely D̃n−2 = (D1)
T
. For n = 2

and n = 3 this yields D̃0 = (D1)
T
and D̃1 = (D1)

T
, respectively. This is the discrete

representation of curl = curlT, meaning that the curl operator is symmetric (aka self-
adjoint). Finally, it can be observed that expression D̃1D̃0 = 0 for n = 2 or D̃2D̃1 = 0 for
n = 3 discretely represents the identity div curl = 0 (the divergence of a curl is zero).

2.5.7 Discrete Hodge star operators

The duality between the primal and dual mesh elements suggests that we can define a
mapping between a primal k−form and a dual (n− k)−form. In algebraic topology, this
mapping is achieved with the help of the discrete Hodge star operator. This discrete
operator will be used later on in the discretization process. While the discrete exterior
derivative is uniquely determined by the Stokes’ theorem, there is a great variety of discrete
Hodge star operators. In a nutshell, a choice of dual mesh induces a choice of discrete
Hodge star.

Given the vector space of discrete k−forms of primal mesh K on Ω ⊂ R2, Ck(K)
and its dual, Cn−k(K̃), the kth discrete Hodge star operator is defined as a linear map
Hk : Ck(K) → Cn−k(K̃) and is represented as a square matrix of size |Ck| × |Ck|. The
structure of the primal Hodge star matrix Hk (for k = 0, . . . , n) depends on the dual mesh.
In particular, the metric of the mesh geometry, such as the size and shape of the mesh
elements, is the key ingredient of the Hodge star operator.

As will be explained in Section 2.5.8, a required condition for numerical stability is
that the discrete Hodge star matrix is positive definite and symmetric. For this reason, we
will use the circumcentric dual for the construction of a primal discrete Hodge star matrix.
Particularly, the DEC (Discrete Exterior Calculus) approach of [21, 14, 15] is adopted in
the current work.
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Matrix Hk maps from a primal k−form to a dual (n− k)−form. This mapping must be
consistent in the sense that both the primal and dual quantities have the same density. For
example, for a given velocity vector field in R3, a primal 1−form characterizes the total
circulation along the primal edge while a dual 2−form represents the total flux through to
the dual face. To be consistent, the primal 1−form must be scaled by the size of the edge
while the dual 2−form by the size of the face. Thus we wish to have the following

1

| ⋆ σ(k)|

∫
⋆σ(k)

⋆γ(k) =
1

|σ(k)|

∫
σ(k)

γ(k)

where ⋆σ(k) is the dual of the k−cell σ(k) and ⋆γ(k) is the dual of the k−form γ(k). Now any
primal cell σ(k) and its circumcentric dual ⋆σ(k) are mutually orthogonal. This implies that
for a particular primal cell and its dual, we have

1

|σ̃(n−k),i|
⟨σ̃(n−k),i, ⋆γ

(k)⟩ = 1

|σ(k),i|
⟨σ(k),i, γ

(k)⟩

and so,
⋆γi

|σ̃(n−k),i|
=

γi
|σ(k),i|

The kth circumcentric primal Hodge star is thus a diagonal matrix with the entries

[Hk]i,i =
|σ̃(n−k),i|
|σ(k),i|

, k = 0, . . . , n

Hence, the action of Hk on γ(k) (a column vector) is obtained by the multiplication Hkγ(k)

which is a dual (n− k)−form.
We also define the circumcentric dual Hodge star H̃n−k which is the map from Cn−k(K̃)

to Ck(K), with k = 0, . . . , n, and is simply the inverse of the primal Hodge star, that is,

H̃n−k =
(
Hk

)−1
. This inverse can be found immediately when a circumcentric dual mesh is

employed, provided that the primal mesh is well centered. The choice for a circumcentric
dual mesh is considered as an advantage compared to a barycentric dual mesh because
barycentric primal Hodge matrices are not always invertible while dual Hodge matrices
are typically dense due to the loss of the orthogonality property. This advantage will be
elaborated in Section 2.5.8.

Let us continue with dimension n = 2. As an example, we consider a simplicial mesh
consisting of well-centered triangular cells. Figure 2.4 illustrates the different primal and
dual k−cells of a 2−simplex. Their volumes are also indicated in the figure. Let Nv, Ne

and Nc be the number of primal vertices, edges and cells, respectively. The corresponding
(circumcentric) primal Hodge star matrices are then given by

[H0]i,i = Av , i = 1, . . . , Nv (2.16)

[H1]i,i =
de
le

, i = 1, . . . , Ne (2.17)
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Figure 2.4: The primal triangular cell with its circumcentric dual. On the top row are
shown three triangles with a 0−cell, 1−cell and 2−cell, respectively. Furthermore, le is the
length of the primal edge and As is the area of the primal cell. By convention, the size of
the vertex is 1. The bottom row shows the respective dual (2− k)−cells as highligted inside
the triangles and are constructed from the circumcentric subdivision. Quantities Av and de
indicate the area of the whole dual cell and the length of the whole dual face, respectively
(they both are resided in adjacent primal cells as well). The symbol ⋆ signifies the Hodge
star that maps from the primal mesh to the dual mesh and conversely. Note that the dual
mesh is not explicitly used, only the volume of the dual mesh elements is stored.

[H2]i,i =
1

As

, i = 1, . . . , Nc (2.18)

Clearly, the entries of the Hodge matrices are metric dependent and are generally not
dimensionless. It is interesting to note that the geometric interpretation of the action of
Hodge matrix H1 is a rotation of a vector in R2 counterclockwise by 90o. In addition,
matrix H0 converts a scalar field to an area-integrated field while the action of H2 is to get
a cell-averaged value of the cell-integrated field variable.

If the computational mesh is well centered, the above matrices are positive definite.
However, for a right-angled triangle, matrix H1 is singular since the length of the edge dual
to its hypotenuse is zero. Moreover, the circumcenter of an obtuse triangle is located outside
the triangle, implying that H1 is negative definite. To overcome these unwanted cases, with
SWASH the barycenter (or the centroid) is chosen locally instead of the circumcenter; see
Section 2.5.10. Note that in case of a rectangular mesh, the matrices Hk (k = 0, 1, 2) are
always positive definite.
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2.5.8 Discrete inner products

A special feature of an invertible Hodge star matrix is that it induces a discrete inner
product. Let now α(k) and β(k) be the real-valued k−forms defined on primal mesh K. An
inner product of these two forms is defined by

⟨α(k), β(k)⟩Hk :=
(
α(k)

)T Hkβ(k)

This bilinear operator ⟨·, ·⟩Hk : Ck(K) × Ck(K) → R is symmetric and positive definite,
provided that Hk is a symmetric positive definite matrix. Thus for such a matrix, its inverse
exists and is symmetric and positive definite as well. Consequently, another discrete inner
product can be provided in the following way,

⟨α̃(k), β̃(k)⟩H̃k =
(
α̃(k)

)T H̃kβ̃(k) =
(
β̃(k)

)T (
H̃k

)T

α̃(k) =
(
β̃(k)

)T

H̃kα̃(k) = ⟨β̃(k), α̃(k)⟩H̃k

where α̃(k), β̃(k) ∈ Ck(K̃).
Next, let the following discrete forms be given

β̃(n−k) = Hkβ(k) , α(k) = H̃n−k α̃(n−k)

then we have

⟨α(k), β(k)⟩Hk =
(
α(k)

)T
β̃(n−k)

and

⟨α̃(n−k), β̃(n−k)⟩H̃n−k =
(
β̃(n−k)

)T

α(k)

so that

⟨α̃(n−k), β̃(n−k)⟩H̃n−k = ⟨α(k), β(k)⟩Hk

As a matter of notation, inner products of mixed forms can be written as

⟨α(k), β̃(n−k)⟩Hk = ⟨α(k), β(k)⟩Hk

and similarly,

⟨α̃(n−k), β(k)⟩H̃n−k = ⟨α̃(n−k), β̃(n−k)⟩H̃n−k

An important aspect of inner products is related to the adjoint of linear operators.
Recall from functional analysis that every linear operator on a Hilbert space comes with an
adjoint operator, and they have a natural relation with respect to inner products. Let V k

and V k+1 be inner product vector spaces and Lk : V k → V k+1 be a linear operator. Then

this operator induces an adjoint operator
(
Lk

)T
: V k+1 → V k in the following way

⟨Lkα(k), β(k+1)⟩Hk+1 = ⟨α(k),
(
Lk

)T
β(k+1)⟩Hk , ∀α(k) ∈ V k , ∀β(k+1) ∈ V k+1

with the inner products defined on the respective vector spaces.
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Next, let us consider a linear map from V k to itself, denoted Ck : V k → V k. This
operator is called self-adjoint (or symmetric) if

⟨Ckα(k), β(k)⟩Hk = ⟨α(k),Ckβ(k)⟩Hk , ∀α(k) , β(k) ∈ V k

implying that (
Ck

)T
= Ck

In addition, the operator is called skew-adjoint (or skew-symmetric) if

⟨Ckα(k), β(k)⟩Hk = −⟨α(k),Ckβ(k)⟩Hk , ∀α(k) , β(k) ∈ V k

and hence, (
Ck

)T
= −Ck

This operator has the special property that ⟨α(k),Ckα(k)⟩Hk = 0 for all α(k) ∈ V k.
The role of discrete inner products in the discretization process becomes clear by

considering the Hamiltonian of the inviscid shallow water equations (see Section 2.3). In
particular, for a given discrete k−form α(k), its energy norm ⟨α(k), α(k)⟩Hk is properly defined
by the symmetric positive definite Hodge star, making it possible to derive directly an
energy conserving (and thus stable) discretization. The above considerations will be useful
later on in Section 2.6.

2.5.9 Discrete de Rham complexes

A cochain complex is a sequence of vector spaces and linear operators (V k,Lk) such that
Lk+1 Lk = 0. When these spaces refer to the spaces of discrete forms with the same
orientation while the linear operator is the discrete exterior derivative, then this cochain
complex is called the discrete de Rham complex.

Using the discrete exterior derivative and discrete Hodge star, a diagram can be composed
as illustrated in Figure 2.5. This diagram reflects on how the discretization process works.
The lower part of the diagram is the sequence of spaces of inner-oriented discrete forms
Ck(K) connected with Dk. This sequence is a cochain complex since Dk+1 Dk = 0. The
upper part of the diagram constitutes a cochain complex of outer-oriented discrete forms
Ck(K̃) with the operator D̃k that satisfies the property D̃k+1 D̃k = 0. These two oriented
cochain complexes are dual with respect to each other. Note that we have tacitly assumed
that the primal mesh K is endowed with inner orientation and the dual mesh K̃ with outer
orientation, but this is rather an arbitrary choice. (In Section 2.6, we will choose this the
other way around.) Finally, the primal and dual complexes are connected by the Hodge
star operator, which completes the double de Rham complex as shown in Figure 2.5.

In the discrete setting, the horizontal links are encoded by the incidence matrices based
on the topological relations of mesh objects. The vertical links are constructed through the
Hodge star matrices that are completely metric (or local) dependent. It is precisely this
construction that is a determining factor in the development of the numerical framework to
be discussed in Section 2.6.
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C0(K) C1(K) C2(K)

C2(K̃) C1(K̃) C0(K̃)

D0 D1

D̃1 D̃0

H0 H̃2 H1 H̃1 H2 H̃0

Figure 2.5: The discrete double de Rham complex in two dimensions with the lower part
depicting the cochain complex of inner-oriented discrete forms and the upper part that
of the outer-oriented discrete forms. Let Lk denotes either Dk or D̃k, then each of these
cochain complexes is a sequence of linear spaces of discrete forms connected with the
exterior derivative Lk with the property Lk+1 Lk = 0. The cochain complexes of inner- and
outer-oriented forms are linked by means of the Hodge star operators Hk and H̃k.

As a first example, the double de Rham complex can be employed to construct the
Laplacian of the pressure: ∆p = ∇ · ∇p. We start at the bottom left of the diagram by
defining an inner 0−form, denoted π(0). Next, we apply the matrix D0 (the gradient) to
obtain an inner 1−form. This is followed by the Hodge matrix H1 to convert the result to an
outer (n− 1)−form. (We could have written “1−form” since n = 2, but to emphasize this
outer form embedded in Rn we use the space dimension.) Then, matrix D̃1 (the divergence)
or D̃n−1 (again to emphasize its relation to outer forms) is applied to get an outer n−form.
Finally, this volume form is transformed back to a point value by means of the Hodge matrix
H̃2 or here H̃n. (The Laplacian itself is a scalar field function.) Thus, the discretization of
the Laplace (or Poisson) operator of the pressure is given by

H̃n D̃n−1H1D0 π(0)

and is considered mimetic because it respects the vector calculus identities and symmetries.
This discrete scalar Laplacian can be implemented on arbitrary well-centered meshes, either
2D or 3D, provided that their metric is given.

The second example demonstrates how to discretize ∆u. The velocity vector u is
discretized as an inner 1−form. We denote by υ(1) this discrete form. We thus start at the
bottom center of the diagram. We can walk through the diagram in two ways. We can first
apply the matrix D1 (the curl), next the matrix H2 followed by D̃n−2 (another curl) and
finally matrix H̃n−1. The other route is first H1, then D̃n−1 (the divergence), matrix H̃n

and lastly the matrix D0 (the gradient). Now, these two operations together make up the
vector Laplacian. Hence, its discretized form reads

D0 H̃n D̃n−1H1 υ(1) + H̃n−1 D̃n−2H2D1 υ(1)

which is precisely the vector calculus identity ∆u = ∇ (∇ · u)−∇×(∇× u). Note, however,
that the appearance of the minus sign is enforced because vector calculus does not deal
with geometry and orientation.

The above examples demonstrate nicely the strength of the double de Rham complex
that provides a natural way to discretize first and second order differential operators while
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mimicking vector calculus identities. This promotes the physical fidelity and accuracy of
the discretization.

2.5.10 Examples

In this section we provide some sample calculations to see how things work out in the case
of a square cell (or a rectangle), an equilateral triangle cell and a right-angled triangle cell
in R2 as depicted in Figure 2.6. Vertices, edges and the face (either square or triangle) are

Figure 2.6: Primal computational cells with oriented k−cells (k = 0, 1, 2): (a) square, (b)
equilateral triangle, and (c) right-angled triangle. Orientation is indicated by the gray
arrows.

denoted as vi, ei and s1, respectively, for i = 1, . . . , p with p = 3 in case of triangles and
p = 4 in case of the square. The adopted convention for the inner orientation to these mesh
elements is shown in the figure, with the condition that the edges are oriented such that
they point toward the vertex index of greater value.

Let us consider the square first as shown in Figure 2.6a. This square is a cell complex,
denoted Ksq. The vertices of this square, {v1, v2, v3, v4}, are the basis of the linear space of
0−chains. Examples of 0−chains are

v1,

v2,

v3 + v4,

v1 + v2 + v4,

etc.

Similarly, the oriented edges of Ksq, {e1, e2, e3, e4}, are the basis of C1(Ksq). A few examples
of 1−chains are
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e1,

e1 + e2 − e3,

−e1 + e4

The corresponding row vectors are
[
1 0 0 0

]
,
[
1 1 −1 0

]
, and

[
−1 0 0 1

]
. Next,

we can take the boundary of such chains, namely,

∂1e1 = v2 − v1,

∂1(e1 + e2 − e3) = ∂1e1 + ∂1e2 − ∂1e3 = v2 − v1 + v4 − v2 + v3 − v4 = v3 − v1,

∂1(−e1 + e4) = −∂1e1 + ∂1e4 = v1 − v2 − v1 + v3 = v3 − v2

Referring to Eq. (2.13), the boundary of the second chain is made up of all 0−chains of cell
complex Ksq with coefficients c1 = 1, c2 = 1, c3 = −1, and c4 = 0, whereas the orientation
coefficients are o1,1 = −1, o1,2 = 1, o2,1 = −1, o2,2 = 1, o3,1 = −1, o3,2 = 1, and o4,1 = −1,
o4,2 = 1.

There is only one oriented 2−chain which is s1. Its boundary equals

∂2s1 = e1 + e2 − e3 − e4

The boundary of this boundary is zero, that is,

∂1∂2s1 = ∂1e1 + ∂1e2 − ∂1e3 − ∂1e4 = v2 − v1 + v4 − v2 + v3 − v4 + v1 − v3 = 0

By virtue of Eq. (2.14), the boundary operators ∂1 and ∂2 are encoded, respectively, by
the following incidence matrices

D1 =


−1 +1 0 0
0 −1 0 +1
0 0 −1 +1

−1 0 +1 0

 , D2 =
[
+1 +1 −1 −1

]
For example, the boundary of the second 1−chain from the above example can be obtained
as follows

[
1 1 −1 0

] 
−1 1 0 0
0 −1 0 1
0 0 −1 1

−1 0 1 0

 =
[
−1 0 1 0

]
which implies ∂1(e1+ e2− e3) = −v1+ v3. One can easily verify that the boundary operator
is nilpotent, that is, D2D1 = 0T.

Since the coboundary operator is the dual of the boundary operator, we find

D0 =


−1 +1 0 0
0 −1 0 +1
0 0 −1 +1

−1 0 +1 0

 , D1 =
[
+1 +1 −1 −1

]
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Note that these matrices are coordinate independent and hold for an arbitrary (curved)
quadrilateral mesh element.

Discrete k−forms maps an oriented k−cell to a real value. For instance, a 0−form
represents a scalar function that produces its value on vertices. Let us define the pressure p
on vertices vi, denoted πi = p(vi). This discrete inner 0−form is represented as a column
vector with 4 entries. We multiply this vector from the left by matrix D0,

−1 +1 0 0
0 −1 0 +1
0 0 −1 +1

−1 0 +1 0



π1

π2

π3

π4

 =


π2 − π1

π4 − π2

π4 − π3

π3 − π1


This result stems from the generalized Stokes’ theorem, namely, evaluating the exterior
derivative of p on edge e1 is identical to evaluating p on the edge boundaries as p(v2)−p(v1).
This is simply the classical fundamental theorem of calculus for line integrals. Thus, the
value of the 1−form δ(0)p is established as the integral quantity on oriented edges. Matrix
D0 is therefore the discrete analogue of the gradient operator ∇.

As a second example, let γi be defined as the circulation along edge ei. Then operator
D1 relates this inner 1−form to the inner 2−form, as follows

[
+1 +1 −1 −1

] 
γ1
γ2
γ3
γ4

 = γ1 + γ2 − γ3 − γ4

Here, the analogy with the Stokes’ curl theorem is obvious and D1 is thus the discrete
version of the curl operator ∇×. In addition, we find that D1D0 = 0T, which is the discrete
analogue of the identity ∇×∇ = 0.

To summarize, the discrete operators D0 and D1 represent exactly the continuous
gradient and curl operators, respectively, on a 2D primal mesh without reference to any
coordinate system.

Next, we turn to the equilateral triangle shown in Figure 2.6b. From this we can deduce
the following discrete version of the gradient and the curl, respectively,

D0 =

−1 +1 0
0 −1 +1

−1 0 +1

 , D1 =
[
+1 +1 −1

]
Again, we observe that D1D0 = 0T. Since the boundary and coboundary operators are
defined purely topologically, the matrices found above also apply to the right-angled triangle
of Figure 2.6c.

In the following, we consider the dual of the square and the triangles as shown in
Figure 2.7. The labeling of the mesh elements are now indicated by a tilde. This time we
only have one vertex and multiple faces for each mesh cell. Moreover, all the 1−cells and
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Figure 2.7: Dual computational cells with oriented (2− k)−cells (k = 0, 1, 2): (a) square,
(b) equilateral triangle, and (c) right-angled triangle. Orientation is indicated by the gray
arrows.

2−cells are open ended, and therefore the considered mesh cells are not a cell complex. We
also notice that one edge is “missing” (its length is zero) in the right triangle cell (Fig. 2.7c).

The outer orientation on the dual cells is depicted in Figure 2.7. For the first example,
the dual of the square, the boundary operators acting on dual 1−cells and 2−cells are given
by, respectively,

∂̃1


ẽ1
ẽ2
ẽ3
ẽ4

 =


ṽ1
ṽ1

−ṽ1
−ṽ1

 , ∂̃2


s̃1
s̃2
s̃3
s̃4

 =


ẽ1 + ẽ4
ẽ2 − ẽ1
ẽ3 − ẽ4

−ẽ2 − ẽ3


Subsequently, the coboundary operators can be found as follows

D̃0 =


+1
+1
−1
−1

 , D̃1 =


+1 0 0 +1
−1 +1 0 0
0 0 +1 −1
0 −1 −1 0


Note that D̃1 is the discrete analogue of the divergence operator ∇·. We also observed that
D̃1 is the negative transpose of D0, that is, D̃1 = −(D0)T, which is the discrete version of
the antisymmetry relation ∇· = −(∇)T.

As illustrated by Figure 2.7a, operator D̃0 is identified with the curl operator. Moreover,
we also see that D̃0 = (D1)T, which implies ∇× = (∇×)T. Finally, we find that D̃1D̃0 = 0
which is the discrete representation of ∇ · ∇× = 0.

In the same vein, we can derive the coboundary operators for the triangles of Figure 2.7b
and 2.7c, which are

D̃0 =

+1
+1
−1

 , D̃1 =

+1 0 +1
−1 +1 0
0 −1 −1


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Despite the missing edge ẽ2 in the right triangle of Figure 2.7c, one should remember
that the coboundary operators are topological, that is, independent of the shape of mesh
elements. Finally, one can observe that the above findings related to symmetries and
identities remain valid for triangular cells.

Thus far, we have seen that the discrete exterior derivative represents the exact discret-
ization of the differential operators grad, curl, and div in the form of matrices that are
purely topological. Such matrices act on coordinate-free variables or physical quantities
(discrete forms) defined on vertices, edges and faces. Since the discrete exterior derivative
obeys the generalized Stokes’ theorem by construction, the resulting discrete grad, curl,
and div operators naturally mimic the vector calculus identities curl grad = 0 and div

curl = 0 and the symmetry relations div = −gradT and curl = curlT.

The discrete Hodge star operators, on the contrary, do not depend on the mesh topology,
but only on the metric (lengths, areas and volumes) of the various mesh elements. A
discrete Hodge star maps between variables living on an inner-oriented mesh and variables
living on an outer-oriented mesh. This map always involves some form of approximation.
Basically, a choice of discrete Hodge star is much like a choice of dual mesh. Here, we
adopted the circumcentric dual like in the examples above (cf. Figure 2.7) which is desired
when considering the stability of a numerical scheme.

We now return to the examples to demonstrate how the circumcentric Hodge star
matrices are computed. Recall the square of Figure 2.7a. The size of this square is 1
and the circumcenter is (1

2
, 1
2
). Hence, the intrinsic volume of the primal edges is |ei| = 1,

i = 1, . . . , 4, and the primal face is |s1| = 1. Note that |vi| = 1 by definition. Furthermore,
we have for the dual edges and faces inside the square, |ẽi| = 1

2
and |s̃i| = 1

4
, i = 1, . . . , 4.

The Hodge star matrix that acts on 0−, 1− and 2−forms is then given by, respectively,

H0 =
1

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , H1 =
1

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , H2 =
[
1
]

We can conclude that all the three matrices are diagonal and positive definite.

Next, consider the equilateral triangle of Figure 2.7b. Let v1 = (−1
2

√
3, 0), v2 = (1

2

√
3, 0)

and v3 = (0, 3
2
) be vertices of the triangle. The circumcenter is then (0, 1

2
) and the area of

the triangle is 3
4

√
3. Furthermore, |ei| =

√
3, |ẽi| = 1

2
, |s1| = 3

4

√
3 and |s̃i| = 1

4

√
3, i = 1, 2, 3.

The corresponding Hodge star matrices are then given by

H0 =

√
3

4

1 0 0
0 1 0
0 0 1

 , H1 =

√
3

6

1 0 0
0 1 0
0 0 1

 , H2 =
4
√
3

9

[
1
]

which are again symmetric positive definite.

For the final example the vertices of the right triangle of Figure 2.7c are v1 = (0, 0),
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v2 = (1, 0) and v3 = (0, 1). Thus, with |s1| = 1
2
, |s̃1| = 1

4
, |s̃2| = |s̃3| = 1

8
, we have

H0 =
1

8

2 0 0
0 1 0
0 0 1

 , H2 =
[
2
]

which are positive definite. Now, the triangle is not well centered since the circumcenter
(1
2
, 1
2
) lies exactly on the longest side of the triangle, meaning that |ẽ2| = 0. This implies

that matrix H1 is not invertible because it is a singular matrix, namely,

H1 =
1

2

1 0 0
0 0 0
0 0 1


In SWASH, this is remedied by choosing the barycenter (the mean of the three vertices)
instead. In the current example, this center is (1

3
, 1
3
). Consequently, |e1| = |e3| = 1,

|e2| =
√
2, |ẽ1| = |ẽ3| =

√
5
6
, |ẽ2| =

√
2
6

and |s̃i| = 1
6
, i = 1, 2, 3, which yields

H0 =
1

6

1 0 0
0 1 0
0 0 1

 , H1 =
1

6

√5 0 0
0 1 0

0 0
√
5

 , H2 =
[
2
]

In particular, the use of this adapted matrix H1 gives rise to a locally inconsistent calculation
of a dual 1−form from a primal 1−form and vice versa. (This also holds true for matrix
H0, but as will become apparent, it will not be used in our discretization method; see
Section 2.6.) Yet, in practice we see that the impact of the discretization error induced by
this local inconsistency is typically very limited. Note that, in this context, generation of
well-centered meshes is not strictly required for our discretization method (see also [39]).

2.6 Mimetic framework for the inviscid shallow water

equations on general meshes

2.6.1 Introduction

Section 2.5 addressed some key ideas that are invaluable for the discretization process,
namely, the discrete forms, the generalized Stokes’ theorem, the discrete exterior derivative
and the primal-dual meshes. The reason is threefold.

First, unlike vectors, discrete forms are coordinate and metric free and therefore have
the same form and properties in all coordinate systems. Since discrete forms are defined
by their values at discrete mesh elements, this also highlights their different roles in the
spatial discretization (e.g., mass circulation vs mass flux while both representing the velocity
vector).

Secondly, the main application of the generalized Stokes’ theorem is to construct the
discrete exterior derivative and, in turn, to derive discrete counterparts of the continuous
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differential operators, viz. grad, curl and div. Like discrete forms, the associated discrete
operators are independent of the coordinate system. Moreover, they have an intrinsically
discrete nature that allows their exact representation in the numerical framework, including
the vector calculus identities curl grad = 0 and div curl = 0.

Finally, the two types of orientation (inner and outer) of the various mesh elements
reveal the primal-dual grid structure of the discretization. This naturally induces the layout
of staggered grids that lies at the root of the Arakawa C-grid finite difference method. More
importantly, the primal-dual framework enables to construct exact discrete expressions for
symmetry relations like div = −gradT, which is required to prevent nonlinear computational
instability.

The main benefits of obeying identities and symmetry relations at the discrete level
include the compatibility with physics and conservation of energy. In general, mimetic
methods for spatial discretization yield physically reliable results, even at relatively coarse
grid spacings, have favorable stability properties, and do not suffer from spurious modes.
Especially, the Arakawa C-grid method is best known for its stability and efficiency and
has attracted great attention of various researchers and engineers in the last five decades.

This section is devoted to deriving a general mimetic framework for the numerical
solution of the inviscid shallow water equations (2.1) and (2.2) on general meshes by
utilizing the concepts of algebraic topology. This derived framework forms the basis for
the classical Arakawa C-grid for rectilinear grids in Chapter 3 and for curvilinear grids in
Chapter 4, and the covolume method using unstructured triangular meshes in Chapter 5.

2.6.2 General mimetic framework

Let Ω ⊂ R2 be a bounded domain on which Eqs. (2.1)−(2.2) are given. This domain is
discretized by a well-centered polygonal mesh, either triangular or rectangular. Since the
mesh is generated by a mesh generator, its boundary edges are aligned with the domain
boundaries. Hence, this mesh is a cell complex and, for this reason, it is considered as the
primal mesh. On the other hand, its circumcentric dual is not a cell complex because the
boundary of dual cells is missing near the domain boundary. Figure 2.8 shows an example
of a triangular mesh and its dual.

The computational mesh is composed of Nv vertices, Ne edges/faces and Nc cells. Here,
we make an explicit distinction between edges as lines (1−cells) on the one hand, and
faces as planes ((n− 1)−cells) on the other, even though they are coincident lines in two
dimensions (n = 2). It should be noted that the orientation of primal faces induces the
orientation of dual edges. Furthermore, by duality, Nc, Ne and Nv also give the number of
vertices, edges and cells, respectively, in the dual mesh.

Discretization of continuity equation

We start with the semi-discretization of the continuity equation (2.1). To enforce mass
conservation in every cell of the mesh, we choose the primal mesh to which the discretization
of Eq. (2.1) will be associated. This equation contains two unknowns, namely, h and q. The
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Figure 2.8: Parts of staggered orthogonal triangular mesh and the primary unknowns
involved for the shallow water equations. Left panel depicts the primal mesh (cell complex
shown as solid lines) with outer discrete forms ν(n) and ϕ(n−1), and right panel shows the
dual mesh (solid lines indicating not a cell complex) with inner discrete forms η̃(0) and γ̃(1).
Definitions of discrete forms and mesh elements are provided in the text.

mass flux q is encoded by a discrete outer (n− 1)−form. It is represented by its surface
integrals over the outer-oriented faces of the mesh. Each integral value is constant per
planar face. For instance, there are three face values for each primal triangular cell (see left
panel of Figure 2.8). Also note that the outer orientation of the face defines a direction of
positive flux; see Figure 2.3b. The set of the integral values on faces provides a metric-free
representation of the flux field. This set is arranged as a column vector with Ne entries
with each entry assigned to a mesh face. We denote this vector by ϕ(n−1).

In the context of incompressible shallow water flows with free surface, mass is usually
expressed in terms of the volume of the water column, or the water height h(x, t), while the
water density is assumed constant throughout the flow field. Therefore, by mass we refer to
the area-integrated height and is treated as an outer discrete n−form. Its discretization is
thus defined on primal n−cells (here, computational mesh cells). It is an outer-oriented
volume form because the net change in the water column is due to the net outflow through
the boundaries of the n−cell (cf. Figure 2.3b). The associated discrete values are stored

as elements of a column vector of size Nc, denoted ν(n). (Each entry is given as ν
(n)
c , see

Figure 2.8.)

Clearly, the primal mesh is outer oriented; see left panel of Figure 2.8. Furthermore,
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when we denote the discrete analogue of the divergence operator by the incidence matrix
Dn−1 of size Nc ×Ne, then the semi-discrete version of the continuity equation is given by

dν(n)

dt
+ Dn−1ϕ(n−1) = 0 (2.19)

which exactly conserves mass (or volume) in each cell of the mesh. Note that the action
of Dn−1 on ϕ(n−1) results in an n−form so that Eq. (2.19) consistently contains only outer
n−forms.

Discretization of momentum equation

By duality, the spatial discretization of the momentum equation (2.2) is implemented on
the inner-oriented dual mesh. Starting with the time derivative term, the quantity hu is
discretized as an inner 1−form defined on the dual edges which measures the total mass
circulation along the edges. It is denoted by γ̃(1) which is a column vector of length Ne.
Since the dual edges are straight lines, each entry is constant per edge and also defines
the flow along the edge (as indicated by γ̃

(1)
ẽ in right panel of Figure 2.8). Accordingly, it

describes the flow field on the dual mesh, independent of the coordinate system.
The right-hand side of Eq. (2.2) is the pressure gradient which represents a driving

force along the flow direction. For consistency reasons, the discretization of the term h∇ζ
must be an inner 1−form evaluated on the dual edges. Here, we show how to derive its
discretization in a mimetic way.

Let ẽ be a dual edge, ṽl be its left vertex and ṽr its right vertex, see right panel of
Figure 2.8. According to the inner orientation of 1−cells (cf. Figure 2.3a), the boundary of
ẽ is given by ∂̃1ẽ = ṽr − ṽl. Next, let us define the grid functions (discrete 0−forms) for
the free surface, the bed level and the water depth by ζi, di and hi, respectively, with i the
index of dual vertex ṽi. By noting that

∇ 1
2
gh2 = gh∇ζ + gh∇d

the application of the dual coboundary operator δ̃0 to 1
2
gh2 on ẽ yields

1

2
gh2

r −
1

2
gh2

l =
1

2
g (hr + hl) (hr − hl) = ghẽ (ζr − ζl) + ghẽ (dr − dl)

where hẽ is the arithmetic mean of the two water depths, each on one side of the edge,

hẽ :=
1

2
(hl + hr)

Note that this average value, although associated with the dual edge, is a 0−form. (The
sum of two k−forms is a k−form.)

The above discretization is exact and provides a discrete expression for the product
term gh∇ζ in terms of inner 0−forms. We first consider both operands separately and then
look into the product term.
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First, let us collect all the point values of the water depth hi into a column vector η̃(0)

of size Nc. We compute the arithmetic mean of this inner 0−form on the dual edges as
explained above. We denote this mean by η̃(0). We observe that this action of averaging
returns a column vector of length Ne. It is important to note that the arithmetic averaging
of an arbitrary discrete form is completely unrelated to the metric.

Next, we sample the discrete values of the water level at the vertices of the dual mesh.
We thus obtain a column vector with Nc elements which is represented by ζ̃(0). The
discretization of ∇ζ on the dual mesh is then given by D̃0ζ̃(0) which is the inner 1−form
defined on the dual edges. Here, the incidence matrix D̃0 of size Ne ×Nc represents the
discrete gradient operator δ̃0 on the dual mesh. Note that by construction D̃0 = − (Dn−1)

T
,

which is required to ensure energy conservation (see below). It should also be highlighted
that D̃1 D̃0 = 0T which implies that the discrete pressure gradient is curl free. Its practical
importance is most evident for depth-averaged rotating flow conditions, as the pressure
gradient cannot act as a spurious source of vorticity ∇× hu.

Finally, the mimetic discretization of the pressure gradient gh∇ζ is given by

g η̃(0) ⊙ D̃0ζ̃(0)

where ⊙ symbolizes the element-wise multiplication of two vectors of the same dimension.
This binary operation returns an inner 1−form of the same length. (The multiplication of
any k−form by a 0−form is a k−form.)

With respect to the second term in the left-hand side of Eq. (2.2), the conditions
imposed on the discretization of the term Au = ∇ · (q⊗ u) are discussed in Section 2.3.
In particular, its discretization must result in a matrix with skew-symmetric off-diagonal
part, as given by Eq. (2.10). This will be addressed in detail in Chapters 3, 4 and 5, but
for now it is designated as Aυ̃(1) which, for consistency, must be an inner 1−form defined
on the dual edges. Here, A is the discrete version of A and is encoded as a square matrix
of dimension Ne × Ne. Note that A is not a topological operator and can be depended
on the metric. Furthermore, the inner 1−form υ̃(1) is the discrete representation of the
depth-averaged velocity vector field u integrated along the dual edges and is given as a
column vector of size Ne.

Putting this all together, the semi-discretization of Eq. (2.2) reads

dγ̃(1)

dt
+ Aυ̃(1) = −g η̃(0) ⊙ D̃0ζ̃(0) (2.20)

At this point we observe that Eqs. (2.19) and (2.20), with the exception of the second
term Aυ̃(1), are exact in the sense that they are independent of the metric. However, there
are more unknowns than equations. Five discrete forms can be distinguished of which two
are designated as the primary unknowns of the governing equations, namely, the pressure
η̃(0) on the dual vertices and the mass flux ϕ(n−1) on the primal faces. (Note that the water
level ζ̃(0) can immediately be derived from η̃(0).) The other three discrete forms are ν(n),
γ̃(1) and υ̃(1). To close the system of equations it is necessary to relate the latter three
discrete forms to the prognostic variables. Such relations are commonly called constitutive
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relations and are established by making use of the Hodge star matrices. Note that they
require the notion of metric. (In physics, the concept of constitutive relations provides
a hypothesized relationship between two physical quantities related to a substance and
so to make equations governing physical laws solvable. Constitutive equations generally
depend on the physical behavior of a particular material and are therefore approximative
in nature.)

Application of the Hodge stars

Based on the de Rham complex diagram of Figure 2.5 we can relate discrete forms defined
on the dual mesh to those on the primal mesh, or vice versa, using the Hodge star matrices.
We treat the discrete forms γ̃(1), ν(n) and υ̃(1) in turn.

Using the matrix Hn−1 we define the constitutive mapping from the volumetric (or mass)
flux per unit cross area (given in units of m3·s−1·m−2) integrated over a primal face (in m2)
to the depth-integrated velocity circulation along the dual edge (with units of m·m·s−1·m)
as

γ̃(1) = Hn−1 ϕ(n−1)

Recall that matrix Hn−1 is invertible if the computational mesh is well centered.
Another discrete constitutive equation takes the following form

ν(n) = H̃0 η̃(0)

with H̃0 relating the pressure head (measured in units of meters) to the volume of the water
column (expressed in m3). Since this matrix is always invertible (each polygonal cell has
non-zero area), we will use its inverse, that is, the primal Hodge matrix Hn.

Next, we continue by specifying the depth-averaged velocity υ̃(1). We first define an
outer depth-averaged velocity (n− 1)−form υ(n−1) according to

υ(n−1) = ϕ(n−1) ⊙
(
η̃(0)

)−1

(2.21)

and its dual is then given by
υ̃(1) = Hn−1 υ(n−1)

As will become apparent later on, Eq. (2.21) is a requirement to fulfill discrete energy
conservation.

With the above discussed approximations, we arrive at the following semi-discrete
system of equations written in terms of the unknowns η̃(0) and ϕ(n−1)

dη̃(0)

dt
+HnDn−1ϕ(n−1) = 0 (2.22)

Hn−1dϕ
(n−1)

dt
+ A

(
η̃(0)

)−1

⊙Hn−1 ϕ(n−1) = −g η̃(0) ⊙ D̃0ζ̃(0) (2.23)

This obtained result is essentially a manifestation of the staggered Arakawa C-grid type
discretization. Eqs. (2.22)−(2.23) represent a suitable basis for the development of the
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various SWASH discretization methods. As such, it can be applied to simplicial meshes
including triangular meshes (see Chapter 5) and to cubical meshes including rectilinear
grids (Chapter 3) and curvilinear grids (Chapter 4).

The compatible discretizations of the grad and div operators on primal-dual meshes
is key to developing a physically consistent and stable method. With this unique feature,
the conservation of the mass and the total energy are satisfied within round-off errors (see
below).

As for the discretization of the divergence (or advective) transport term ∇· (q⊗ u), that
is, Aυ̃(1), it is useful to note that it necessarily constitutes a discretization error. Although it
is desirable to make this discretization energy conserving, as will be discussed below, there
are applications that require some form of dissipation such as, for example, the propagation
of bores and wave breaking. The usual approach is to introduce energy dissipation implicitly
through the upwind approximation of the divergence term. As demonstrated by e.g.,
[73, 75], this numerical treatment allows an accurate regularization of the shock waves while
stabilizing the semi-discretization. This will be further discussed in Chapter 3.

Energy conservation

Here we proof that the system of equations (2.22)−(2.23) is a Hamiltonian system. The
discrete version of the total energy of the system is given by

H = Hkin +Hpot =
1

2
⟨υ(n−1), ϕ(n−1)⟩Hn−1 +

1

2
g⟨η̃(0), η̃(0)⟩H̃0

and is well defined, provided that the discrete inner products are positive definite and
symmetric. We will regularly use the algebraic properties of these inner products as
outlined in Section 2.5.8. Let us consider the two contributions of the discrete Hamiltonian
separately.

By analogy with its continuous equivalent, the rate of change of the discrete Hkin reads

dHkin

dt
= −⟨κ(n),

dη̃(0)

dt
⟩Hn + ⟨υ(n−1),

dγ̃(1)

dt
⟩Hn−1

with

κ(n) =
1

2
⟨υ̃(1), υ(n−1)⟩Hn−1

defined as the discrete kinetic energy (as volume form). Now, one can deduce the following
result from the first term of the right-hand side

⟨κ(n),
dη̃(0)

dt
⟩Hn =

1

2
⟨υ(n−1), υ̃(1) ⊙ dη̃(0)

dt
⟩Hn−1

By substituting this expression and Eq. (2.20), we obtain the following result

dHkin

dt
= −1

2
⟨υ(n−1), υ̃(1) ⊙ dη̃(0)

dt
⟩Hn−1 − ⟨υ(n−1),Aυ̃(1)⟩Hn−1 − ⟨υ(n−1), g η̃(0) ⊙ D̃0ζ̃(0)⟩Hn−1
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and subsequently using Eq. (2.21), we have

dHkin

dt
= −1

2
⟨υ(n−1), υ̃(1) ⊙ dη̃(0)

dt
⟩Hn−1 − ⟨υ(n−1),Aυ̃(1)⟩Hn−1 − ⟨ϕ(n−1), g D̃0η̃(0)⟩Hn−1 (2.24)

Here, we have assumed a uniform bed. Note that the definition of υ(n−1) given by Eq. (2.21)
is required to arrive at the last term of Eq. (2.24).

Next, we aim to expand the second term of Eq. (2.24). Let us denote the off-diagonal
part of matrix A by C. We assume a proper discretization of A so that matrix C is
skew-symmetric. Based on Eq. (2.10) the discretization of the second term is given by

⟨υ(n−1),Aυ̃(1)⟩Hn−1 =
1

2
⟨υ(n−1),Cυ̃(1)⟩Hn−1−1

2
⟨υ(n−1),CTυ̃(1)⟩Hn−1−1

2
⟨υ(n−1),

dη̃(0)

dt
⊙υ̃(1)⟩Hn−1

The sum of the first two terms of the right-hand side reduces to

⟨υ(n−1),Cυ̃(1)⟩Hn−1 = ⟨υ(n−1),Cυ(n−1)⟩Hn−1 = 0

by virtue of the skew-symmetry property of C, so that

⟨υ(n−1),Aυ̃(1)⟩Hn−1 = −1

2
⟨υ(n−1),

dη̃(0)

dt
⊙ υ̃(1)⟩Hn−1

Then substitution of this result into Eq. (2.24) yields

dHkin

dt
= −⟨ϕ(n−1), g D̃0η̃(0)⟩Hn−1

For the second contribution, the discrete analogue of the rate of change of Hpot is given
by

dHpot

dt
= ⟨gη̃(0), dν

(n)

dt
⟩H̃0 = −⟨gη̃(0),Dn−1ϕ(n−1)⟩H̃0

Finally, the rate of change of the discrete Hamiltonian reads

dH
dt

=
dHkin

dt
+

dHpot

dt
= −⟨ϕ(n−1), g D̃0η̃(0)⟩Hn−1 − ⟨gη̃(0),Dn−1ϕ(n−1)⟩H̃0

= −
[
⟨ϕ(n−1), g D̃0η̃(0)⟩Hn−1 + ⟨g

(
Dn−1

)T
η̃(0), ϕ(n−1)⟩H̃1

]
= −

[
⟨ϕ(n−1), g D̃0η̃(0)⟩Hn−1 − ⟨g D̃0η̃(0), ϕ(n−1)⟩H̃1

]
= 0

where we have use the fact that the discrete gradient is minus the adjoint of the discrete
divergence.
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Chapter 3

Mimetic discretizations of inviscid
shallow water equations for Cartesian
meshes

This chapter is yet empty. The following link is left here to give an idea of what the scope
of this chapter will look like: SWASH − 2D structured grid.
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https://swash.sourceforge.io/online_doc/swash.pdf
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Chapter 4

Mimetic discretizations of inviscid
shallow water equations for
curvilinear grids

This chapter is under preparation.
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Chapter 5

Covolume method for discretization of
inviscid shallow water equations on
unstructured triangular meshes

This chapter is yet empty. The following link is left here to give an idea of what the content
of this chapter will look like: SWASH − 2D unstructured triangular mesh.
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https://swash.sourceforge.io/online_doc/unswash.pdf
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Chapter 6

Three-dimensional shallow water
equations

This chapter is yet empty. The following link is left here to give an idea of what the content
of this material will look like: SWASH − sigmal layers.
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https://swash.sourceforge.io/online_doc/dcse.pdf


56 Chapter 6



Chapter 7

Numerical approaches

This chapter is under preparation.
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Chapter 8

Implementation of boundary
conditions

This chapter is under preparation.
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Chapter 9

Iterative solvers

9.1 Strongly Implicit Procedure (SIP)

We want to solve the following linear system of equations

AN⃗ = b⃗ (9.1)

where A is some non-symmetric penta-diagonal matrix, N⃗ is the wave action vector to be
solved and b⃗ contains source terms and boundary values.

The basis for the SIP method (Stone, 1968; Ferziger and Perić, 1999) lies in the observa-
tion that an LU decomposition is an excellent general purpose solver, which unfortunately
cannot take advantage of the sparseness of a matrix. Secondly, in an iterative method, if
the matrix M = LU is a good approximation to the matrix A, rapid convergence results.
These observations lead to the idea of using an approximate LU factorization of A as the
iteration matrix M , i.e.:

M = LU = A+K (9.2)

where L and U are both sparse and K is small. For non-symmetric matrices the incomplete
LU (ILU) factorisation gives such an decomposition but unfortunately converges rather
slowly. In the ILU method one proceeds as in a standard LU decomposition. However, for
every element of the original matrix A that is zero the corresponding elements in L or U is
set to zero. This means that the product of LU will contain more nonzero diagonals than
the original matrix A. Therefore the matrix K must contain these extra diagonals as well
if Eq. (9.2) is to hold.

Stone reasoned that if the equations approximate an elliptic partial differential equation
the solution can be expected to be smooth. This means that the unknowns corresponding
to the extra diagonals can be approximated by interpolation of the surrounding points. By
allowing K to have more non zero entries on all seven diagonals and using the interpolation
mentioned above the SIP method constructs an LU factorization with the property that for
a given approximate solution ϕ the product Kϕ ≈ 0 and thus the iteration matrix M is
close to A by relation (9.2).
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To solve the system of equations the following iterations is performed, starting with an
initial guess for the wave action vector N⃗0 an iteration is performed solving:

U N⃗ s+1 = L−1K N⃗ s + L−1 b⃗ (9.3)

Since the matrix U is upper triangular this equation is efficiently solved by back substitution.
An essential property which makes the method feasible is that the matrix L is easily invertible.
This iterative process is repeated s = 0, 1, 2, ... until convergence is reached.



Chapter 10

Parallel implementation aspects

This chapter is under preparation.
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