
SWASH

IMPLEMENTATION MANUAL

SWASH version 10.05

by : The SWASH team

mail address : Delft University of Technology
Faculty of Civil Engineering and Geosciences
Environmental Fluid Mechanics Section
P.O. Box 5048
2600 GA Delft
The Netherlands

e-mail : m.zijlema@tudelft.nl
website : http://www.tudelft.nl/swash

Copyright (c) 2010-2024 Delft University of Technology.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/fdl.html#TOC1.

http://www.tudelft.nl/swash
http://www.gnu.org/licenses/fdl.html#TOC1

iv

Contents

1 Introduction 1
1.1 The material . 2

2 Use of patch files 9

3 Installation 11
3.1 Introduction . 11
3.2 Classic build instructions . 11

3.2.1 Configuring the build . 11
3.2.2 Building SWASH using GNU make 13
3.2.3 Building SWASH from scratch . 13
3.2.4 Building with MPI support . 16

3.3 Building SWASH with CMake . 16
3.3.1 Build instructions . 17
3.3.2 Configuring the build . 18
3.3.3 Clean up the build files . 19

4 User dependent changes and the file swashinit 21

5 Run instructions 25

6 Testing SWASH 29

v

vi

Chapter 1

Introduction

This Implementation Manual is a part of the total material to implement the SWASH
model on your computer system. The total material consists of:

• the SWASH source code,

• the pre-built SWASH release for Windows,

• the User Manual,

• this Implementation Manual,

• some test cases.

All of the material can be found at the official SWASH homepage.

Since version 8.01, the SWASH source code is also hosted on GitLab and can be cloned
from this repository. For details see Section 3.3.

On the SWASH website, general information is given about the model functionalities, phys-
ics and limitations of SWASH. Also, the modification history (or release notes) of SWASH
and information on support are provided.

After downloading the material, you may choose between

• direct usage of the pre-built SWASH for Windows and

• implementation of SWASH on your computer system.

If you want to use the pre-built SWASH please read Chapters 5 and 6 for further inform-
ation.

For the purpose of implementation, you have access to the source code of SWASH and
additional files, e.g. for testing SWASH. Please read the copyright in this manual and in

1

https://swash.sourceforge.io
https://gitlab.tudelft.nl/citg/wavemodels/swash

2 Chapter 1

the source code with respect to the terms of usage and distribution of SWASH. You are
permitted to implement SWASH on your computer system. However, for any use of the
SWASH source code in your environment, proper reference must be made to the origin of
the software!

Implementation involves the following steps:

1. Copying the source code from the SWASH website to the computer system on which
you want to run SWASH.

2. If necessary, applying patches for an upgrade of the source code due to e.g., bug fixes,
resolved issues, new features, etc.

3. Making a few adaptions in installation-dependent parts of the code.

4. Compiling and linking the source code to produce an executable of SWASH.

5. Testing of the built SWASH.

After the last step you should have the built SWASH ready for usage. Note that steps 3
and 4 can be carried out fully automatically.

1.1 The material

The source tarball swash-10.05.tar.gz contains the SWASH source code and consists of
the following files:

general modules : ocpmod.ftn
SwashModule1.ftn90
SwashModule2.ftn90

modules for flow : SwashFlowdata.ftn90
modules for rigid bodies : SwashRigBoddata.ftn90
modules for solvers : SwashSolvedata.ftn90
modules for support
parallel MPI runs : m parall.ftn

main program : Swash.ftn90
SwashMain.ftn90

pre-processing routines : SwashBackup.ftn90
SwashBCboundwave.ftn90
SwashBCshortwave.ftn90
SwashBCspecfile.ftn90
SwashBCspectrum.ftn90

Introduction 3

SwashBCStokeswave.ftn90
SwashBCtransferfnc.ftn90
SwashBounCond.ftn90
SwashIntWavgen.ftn90
SwashCheckPrep.ftn90
SwashInit.ftn90
SwashInitBCtrans.ftn90
SwashInitCompGrid.ftn90
SwashInitCompUgrid.ftn90
SwashInitCond.ftn90
SwashInitSteady.ftn90
SwashInputField.ftn90
SwashInputGrid.ftn90
SwashReadBndval.ftn90
SwashReadInput.ftn90
SwashReadTestpnts.ftn90
SwashReqOutL.ftn90
SwashReqOutQ.ftn90

computational routines : SwashAmbCurrent.ftn90
SwashAntiCreep1DH.ftn90
SwashAntiCreep2DH.ftn90
SwashBotFrict.ftn90
SwashBreakPoint.ftn90
SwashComputFlow.ftn90
SwashComputStruc.ftn90
SwashComputTrans.ftn90
SwashComputTurb.ftn90
SwashDensity.ftn90
SwashDryWet.ftn90
SwashExpDep1DHflow.ftn90
SwashExpDep1DHtrans.ftn90
SwashExpDep2DHflow.ftn90
SwashExpDep2DHtrans.ftn90
SwashExpLay1DHflow.ftn90
SwashExpLayP1DHflow.ftn90
SwashExpLay1DHtrans.ftn90
SwashExpLay2DHflow.ftn90
SwashExpLayP2DHflow.ftn90
SwashExpLay2DHtrans.ftn90
SwashFlowDP.ftn90
SwashFloatObjects.ftn90
SwashForcesRigidBod.ftn90
SwashGeometrics.ftn90

4 Chapter 1

SwashHDiffZplane1DH.ftn90
SwashHDiffZplane2DH.ftn90
SwashHorzVisc.ftn90
SwashHydroLoads.ftn90
SwashImpDep1DHflow.ftn90
SwashImpDep2DHflow.ftn90
SwashImpLay1DHflow.ftn90
SwashImpLayP1DHflow.ftn90
SwashImpLay2DHflow.ftn90
SwashImpLayP2DHflow.ftn90
SwashKepsMod1DH.ftn90
SwashKepsMod2DH.ftn90
SwashReynoldsStress.ftn90
SwashLayerIntfaces.ftn90
SwashLogLaw.ftn90
SwashMotionRigidBod.ftn90
SwashPorousStruc.ftn90
SwashPorFricDep.ftn90
SwashPorFricLay.ftn90
SwashPresFlow.ftn90
SwashSolvers.ftn90
SwashSpongeLayer.ftn90
SwashUpdateData.ftn90
SwashUpdateDepths.ftn90
SwashUpdateFld.ftn90
SwashUpdDepu.ftn90
SwashUpdFlowFlds.ftn90
SwashUpdKBCrigb.ftn90
SwashUpdPress.ftn90
SwashVeget.ftn90
SwashVertVisc.ftn90
SwashWindStress.ftn90

routines for unstructured
grids : SwashBndTopology.ftn90

SwashCheckGrid.ftn90
SwashCompUFlow.ftn90
SwashCompUnstruc.ftn90
SwashCompUTrans.ftn90
SwashCompUTurb.ftn90
SwashExpDepUflow.ftn90
SwashExpDepUtrans.ftn90
SwashExpLayUflow.ftn90
SwashExpLayUtrans.ftn90

Introduction 5

SwashFlowUDP.ftn90
SwashImpDepUflow.ftn90
SwashImpLayUflow.ftn90
SwashInitBCUtrans.ftn90
SwashLayUIntfaces.ftn90
SwashPrintGridInfo.ftn90
SwashUBotFrict.ftn90
SwashUBreakPoint.ftn90
SwashUDryWet.ftn90
SwashUHorzVisc.ftn90
SwashUKepsMod.ftn90
SwashULogLaw.ftn90
SwashUpdateUData.ftn90
SwashUpdateUDepths.ftn90
SwashUpdUDepu.ftn90
SwashUpdUFlowFlds.ftn90
SwashUpdUPress.ftn90
SwashUServ.ftn90
SwashUSpongLayer.ftn90
SwashUWindStress.ftn90

post-processing routines : swanout2.ftn
SwashAverOutp.ftn90
SwashCoorOutp.ftn90
SwashDecOutL.ftn90
SwashDecOutQ.ftn90
SwashElemOutp.ftn90
SwashFlobjOutp.ftn90
SwashOutput.ftn90
SwashQuanOutp.ftn90
SwashRunupHeight.ftn90
SwashVTKWriteHeader.ftn90
SwashVTKWriteData.ftn90
SwashVTKPDataSets.ftn90

service routines : SwashCleanMem.ftn90
SwashPrintSettings.ftn90
SwashServices.ftn90

SWAN service routines : swanser.ftn
routines for support
parallel MPI runs : swanparll.ftn
SWAN routines for
unstructured grids : SwanReadGrid.ftn90

SwanReadADCGrid.ftn90
SwanReadTriangleGrid.ftn90

6 Chapter 1

SwanReadEasymeshGrid.ftn90
SwanCreateEdges.ftn90
SwanGridTopology.ftn90
SwanGridVert.ftn90
SwanGridCell.ftn90
SwanGridFace.ftn90
SwanFindPoint.ftn90
SwanPointinMesh.ftn90
SwanBpntlist.ftn90
SwanInterpolatePoint.ftn90
SwanInterpolateOutput.ftn90

routines for installation : ocpids.ftn
command reading routines : ocpcre.ftn
miscellaneous routines : ocpmix.ftn
SWAN modules for
unstructured grids : SwanGriddata.ftn90

SwanGridobjects.ftn90
SwanCompdata.ftn90

The SWASH source code is written in Fortran 90. Most of the routines are written in free
form and are indicated by extension f90. Some routines are written in fixed form and
depending on your system, the extension may be for or f. The conversion from ftn or
ftn90 to one of these extensions can be done automatically or manually; see Chapter 3.

You are allow to make changes in the source code of SWASH, but Delft University of Tech-
nology will not support modified versions of SWASH. If you want your modifications to be
implemented in the authorized version of SWASH (the version on the SWASH homepage),
you need to submit these changes to the SWASH team (e-mail: m.zijlema@tudelft.nl).

The SWASH source code is additionally accompanied by the following files:

installation procedures : INSTALL.README
Makefile
macros.inc
which.cmd
platform.pl
switch.pl

run procedures : SWASHRUN.README
swashrun
swashrun.bat

machinefile for parallel
MPI runs : machinefile

Introduction 7

edit file : swash.edt

On the SWASH homepage, you also find some test cases with some output files for making
a configuration test of SWASH on your computer. You may compare your results with e.g.
analytical or laboratory data. See Chapter 6 for further details.

8 Chapter 1

Chapter 2

Use of patch files

Between releases of authorised SWASH versions, it is possible that bug fixes or new fea-
tures are published on the SWASH homepage. These are provided by patch files that can
be downloaded from the website. Typically, a patch can be installed on top of the existing
source code. Patches are indicated by a link to patchfile. The names refer to the current
version number supplemented with letter codes. The first will be coded ’A’ (i.e. 10.05.A),
the second will be coded ’B’, the third will be coded ’C’, etc. The version number in the
resulting output files will be updated to 10.05ABC, indicating the implemented patches.

To use a patch file, follow the next instructions:

1. download the file (right-click the file and choose save link as)

2. place it in the directory where the source code of SWASH is located

3. execute patch -p0 < patchfile

After applying a patch or patches, you need to recompile the SWASH source code.

It is important to download the patch and not cut and paste it from the display of your web
browser. The reason for this is that some patches may contain tabs, and most browsers
will not preserve the tabs when they display the file. Copying and pasting that text will
cause the patch to fail because the tabs would not be found. If you have trouble with
patch, you can look at the patch file itself.

Note to Linux/UNIX users: the downloaded patch files are MS-DOS ASCII files and con-
tain carriage return (CR) characters. To convert these files to UNIX format, use the com-
mand dos2unix. Alternatively, execute cat 10.05.[A-C] | tr -d ’\r’ | patch that
apply the patch files 10.05.A to 10.05.C to the SWASH source code at once after which
the conversion is carried out.

Note to Windows users: patch is a UNIX command. Download the patch program from
the SWASH website, which is appropriate for Windows operating system.

9

10 Chapter 2

Chapter 3

Installation

3.1 Introduction

SWASH can be installed on various architectures, including laptops and supercomputers.
The portability of the SWASH source code is guaranteed by the use of standard ANSI
Fortran 90. (See also the manual Programming rules.) Hence, virtually all Fortran com-
pilers can be used for installing SWASH. It should be noted that there are two Fortran
commands used in the source code of SWASH (v8.01+) which were introduced in later
versions of Fortran: stream I/O (Fortran 2003 standard) and execution OS command line
(Fortran 2008 standard). They are, however, supported by currently maintained Fortran
compilers, including gfortran and Intel® Fortran.

The SWASH source code also supports parallelization, which enables a considerable reduc-
tion in the wall-clock time for relatively large CPU-demanding calculations. A message
passing modelling is employed based on the Message Passing Interface (MPI) standard
that enables communication between independent processors. Hence, users can optionally
run SWASH on a Linux cluster.

The SWASH software can be build in the usual way via GNU make or from scratch. This
building process is explained in Section 3.2. However, since version 8.01, the option to
install SWASH using CMake is supported and is elaborated in Section 3.3.

3.2 Classic build instructions

3.2.1 Configuring the build

The material on the SWASH website provides a Makefile and two Perl scripts (platform.pl
and switch.pl) that enables the user or developer to install SWASH on the computer in
a proper manner. For this, the following platforms, operating systems and compilers are
supported (and tested):

11

12 Chapter 3

platform OS F90 compiler
Intel/AMD desktop/laptop Linux gfortran
Intel Core desktop/laptop Linux Intel®
Intel Xeon desktop/laptop Linux Intel®
x86-64 processor-based system Linux Portland Group
Intel/AMD desktop/laptop Linux Lahey
Intel Core desktop/laptop MS Windows Intel®
Intel Xeon desktop/laptop MS Windows Intel®
Intel/AMD desktop/laptop MS Windows Lahey
MacBook macOS gfortran
MacBook macOS Intel®
SGI Origin 3000 (Silicon Graphics) IRIX SGI
IBM SP AIX IBM
Compaq True 64 Alpha (DEC ALFA) OSF1 Compaq
Sun SPARC Solaris Sun
PA-RISC (HP 9000 series 700/800) HP-UX v11 HP
IBM Power6 (pSeries 575) Linux IBM
Power Mac G4 Mac OS X IBM

If your computer and available compiler is mentioned in the table, you may consult Section
3.2.2 for a complete build of the software without making any modifications. If desired,
you may install SWASH manually; see Section 3.2.3.

Note that for a successful installation, a Perl package must be available on your computer.
Usually, it is available for macOS, Linux and a UNIX-like operating system. Check it by
typing perl -v. You can download Perl for MS Windows from Strawberry Perl. The Perl
version should be at least 5.0.0 or higher!

Before starting the build process, the user may first decide how to run the SWASH program.
There are two run modes:

• serial runs or

• parallel runs on a multi-core PC or a Linux cluster.

For a typical depth-averaged flume computation, it may be sufficient to choose the serial
mode, i.e. one SWASH program running on one processor. The parallel mode is more
convenient for a relatively large CPU-demanding multi-layer flume (2DV) or basin-like
(2DH/3D mode) calculation.

For a proper installation of MPI-based application on Windows, please consult Section
3.2.4.

https://strawberryperl.com

Installation 13

3.2.2 Building SWASH using GNU make

Carry out the following steps for building SWASH on your computer.

1. An include file containing some machine-dependent macros must be created first.
This file is called macros.inc and can be created by typing

make config

2. Now, SWASH can be built for serial or parallel mode, as follows:

mode instruction
serial make ser

parallel make mpi

IMPORTANT NOTES:

• To Windows users:

– To execute the above instructions, just open a command prompt.

– To build SWASH on Windows platforms by means of a Makefile you need the
command-line utility Nmake, which is provided by the Microsoft® Visual Studio.

– This installation currently supports Intel® MPI library for Windows. See Sec-
tion 3.2.4 for further information.

• One of the commands make ser and make mpi must be preceded once by make

config.

• If desirable, you may clean up the generated object files and modules by typing
make clean. If you want to delete any stray files from a previous compilation, just
type make clobber.

• If you are unable to install SWASH using the Makefile and Perl scripts for whatever
reason, see Section 3.2.3 that includes instructions for a custom installation.

3.2.3 Building SWASH from scratch

It is recommended to consult Section 3.2.2 for a complete build of SWASH on your com-
puter. However, if you want to build SWASH on your system from scratch, then please
follow the instructions below.

14 Chapter 3

Modifying the source code

To compile SWASH on your computer system properly, some subroutines should be adapted
first depending on the operating system, use of compilers and the wish to use MPI for
parallel runs. This can be done by removing the switches started with ’ !’ followed by
an indentifiable prefix in the first 3 or 4 columns of the subroutine. A Perl script called
switch.pl is provided in the material that enables the user to quickly select the switches
to be removed. This script can be used as follows:

perl switch.pl [-dos] [-unix] [-f95] [-mpi] [-cray] [-sgi]

[-cvis] [-timg] [-matl4] [-impi] *.ftn[90]

where the options are all optionally. The meaning of these options are as follows.

-dos, -unix Depending on the operating system, both the TAB and directory separator character
must have a proper value (see also Chapter 4). This can be done by removing the
switch !DOS or !UNIX, for Windows and Linux/UNIX platforms, respectively, in
the subroutines OCPINI (in ocpids.ftn) and TXPBLA (in swanser.ftn). For other
operating system (e.g., Macintosh), you should change the values of the following
variables manually: DIRCH1, DIRCH2 (in OCPINI), TABC (in OCPINI) and ITABVL (in
TXPBLA).

-f95 If you have a Fortran 95 compiler or a Fortran 90 compiler that supports Fortran 95
features, it might be useful to activate the CPU TIME statement in the subroutines
SWTSTA and SWTSTO (in swanser.ftn) by removing the switch !F95 meant for the
detailed timings of several parts of the SWASH calculation. Note that this can be
obtained with the command TEST by setting itest=1 in your command file.

-mpi For the proper use of MPI, you must remove the switch !MPI at several places in the
files swanparll.ftn, Swash*2DHflow.ftn90 and m parall.ftn.

-cray, -sgi If you use a Cray or SGI Fortran 90 compiler, the subroutines OCPINI (in ocpids.ftn)
and FOR (in ocpmix.ftn) should be adapted by removing the switch !/Cray or !/SGI
since, these compilers cannot read/write lines longer than 256 characters by default.
By means of the option RECL in the OPEN statement sufficiently long lines can be
read/write by these compilers.

-cvis The same subroutines OCPINI and FOR need also to be adapted when the Compaq
Visual Fortran compiler is used in case of a parallel MPI run. Windows systems have a
well-known problem of the inability of opening a file by multiple SWASH executables.
This can be remedied by using the option SHARED in the OPEN statement for shared
access. For this, just remove the switch !CVIS.

-timg If the user want to print the timings (both wall-clock and CPU times in seconds)
of different processes within SWASH then remove the switch !TIMG. Otherwise, no
timings will be keeped up and subsequently printed in the PRINT file.

Installation 15

-matl4 By default, the created binary Matlab files are of Level 5 MAT-File format and are
thus compatible with MATLAB version 5 and up. In this case the switch !MatL5
must be removed. However, some machines do not support a 1-byte unit for the
record length (e.g. IBM Power6). At those computers, the binary Matlab files must
be formatted of Level 4. In this case the switch !MatL4 must be removed while
the switch !MatL5 should not be removed. Level 4 MAT-files are compatible with
MATLAB versions 4 and earlier. However, they can be read with the later versions
of MATLAB.

-impi Some Fortran compilers do not support USE MPI statement and therefore, the module
MPI in m parall.ftn must be included by removing the switch !/impi.

For example, you work on a Linux cluster where MPI has been installed and use the Intel®
Fortran compiler (that can handle Fortran 95 statements), then type the following:

perl switch.pl -unix -f95 -mpi *.ftn *.ftn90

Note that due to the option -unix the extension ftn is automatically changed into f and
ftn90 into f90.

Compiling and linking SWASH source code

After the necessary modifications are made as described in the previous section, the source
code is ready for compilation. All source code is written in Fortran 90 so you must have
a Fortran 90 compiler in order to compile SWASH. The source code cannot be compiled
with a Fortran 77 compiler. If you intended to use MPI for parallel runs, you must use
the command mpif90 (or mpiifort in case of the Intel® compiler) instead of the original
compiler command.

The SWASH source code complies with the ANSI Fortran 90 standard, except for a few
cases, where the limit of 19 continuation lines is violated. We are currently not aware of
any compiler that cannot deal with this violation of the ANSI standard.

When compiling SWASH you should check that the compiler allocates the same amount
of memory for all INTEGERS, REAL and LOGICALS. Usually, for these variables 4 bytes are al-
located, on supercomputers (vector or parallel), however, this sometimes is 8 bytes. When
a compiler allocates 8 bytes for a REAL and 4 bytes for an INTEGER, for example, SWASH
will not run correctly.

Furthermore, SWASH can generate binary MATLAB files on request, which are unformat-
ted. Some compilers, e.g. Intel® Fortran, measured record length in 4-byte or longword
units and as a consequence, these unformatted files cannot be loaded in MATLAB. Hence,
in such as case a compiler option is needed to request 1-byte units, e.g. for Intel® Fortran
this is /assume:byterecl (Windows) or -assume byterecl (Linux/UNIX).

16 Chapter 3

The modules must be compiled first. Several subroutines use these modules. These sub-
routines need the compiled versions of the modules before they can be compiled. You can
find here below the complete list of modules in the proper order.

• ocpmod.f

• SwashModule1.f90,SwashModule2.f90

• m parall.f

• SwanGriddata.f90, SwanGridobjects.f90, SwanCompdata.f90

• SwashFlowdata.f90, SwashSolvedata.f90

Linking should be done without any options nor using shared libraries (e.g. math or NAG).
It is recommended to rename the executable to swash.exe after linking.

Referring to the previous example, compilation and linking may be done as follows:

mpif90 <list of modules> ocpmix.f swanser.f Swash*.f90 Swan*.f90 -o swash.exe

3.2.4 Building with MPI support

SWASH can be built with support for MPI. It is assumed that MPI has been installed
already in the Linux environment. However, this is probably not the case for Windows.
At any rate, the Intel® MPI library may be employed to build an MPI application. This
library is included in the Intel® oneAPI HPC Toolkit. In this respect, the following steps
need to be made first

• make sure that the variables INCS MPI and LIBS MPI in the file macros.inc are
emptied, and

• change the value of the variable F90 MPI by replacing ifort by mpiifort.

Build SWASH by executing the command make mpi.

3.3 Building SWASH with CMake

CMake is a cross-platform build system that creates native build files (for use with a gen-
erator GNU Make, Nmake or Ninja) for command line builds or project files for an IDE
(e.g. Visual Studio). CMake makes use of configuration files that control the build process.
We recommend to use CMake 3.12+ for building SWASH. There are installers available
for Windows, Linux and macOS. See the download page for installation instructions.

Ninja is one of the many build generators to create executable files and libraries from
source code. The way it works is very similar to GNU make; for example, it does not
rebuild things that are already up to date. We recommend Ninja because it is faster than
GNU make. Ninja can be downloaded from its git repository.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit-download.html
https://cmake.org/
https://cmake.org/download/
https://ninja-build.org/
https://github.com/ninja-build/ninja/releases

Installation 17

3.3.1 Build instructions

For a proper build, the release code including the required CMake files can be downloaded
or cloned from the SWASH git repository hosted on TU Delft GitLab.

Next, carry out the following steps.

1. clone the repository and navigate to the top level source directory

git clone https://gitlab.tudelft.nl/citg/wavemodels/swash.git && cd swash

2. create the build directory

At the top of SWASH source directory execute the following commands

mkdir build

cd build

This step is required to perform an out-of-source build with CMake, that is, build files will
not be created in the /swash/src directory.

3. build the software

Two CMake configuration files are provided as required for the build. They are placed in the
following source directories: ./swash/CMakeLists.txt and ./swash/src/CMakeLists.txt.
The following two CMake commands should suffice to build SWASH

cmake .. -G Ninja

cmake --build .

The first command refers to the source directory where the main configuration file is in-
voked. The second command carries out the building in the build directory. The package
is actually built by invoking Ninja.

4. install the package

cmake --install .

The default install directory is /usr/local/swash (Unix-like operating systems, including
macOS) or C:\PROGRAM FILES\swash (Windows). Instead, you may install SWASH in
any other user-defined directory, as follows

cmake --install . --prefix /your/defined/directory

https://gitlab.tudelft.nl/citg/wavemodels/swash
https://gitlab.tudelft.nl/public/

18 Chapter 3

After installation a number of subdirectories are created. The executables end up in the
/bin directory, the library files in /lib, and the module files in /mod. Additionally, the
/doc folder contains the pdf documents, the folder /tools consists of some useful scripts
and the /misc directory contains all of the files that do not fit in other folders (e.g., a
machinefile and the edit file swash.edt).

Please note that the installation can be skipped (though not recommended). Executables
and libraries are then located in subdirectories of the build directory.

3.3.2 Configuring the build

The build can be (re)configured by passing one or more options to the CMake command
with prefix -D. A typical command line looks like

cmake .. -D<option>=<value>

where <value> is a string or a boolean, depending on the specified option. The table below
provides an overview of the non-required options that can be used.

option description default value
CMAKE INSTALL PREFIX user-defined installation path /usr/local/swash

CMAKE Fortran COMPILER full path to the Fortran compiler determined by CMake
MPI enable build with MPI OFF

CMAKE VERBOSE MAKEFILE provide verbose output of the build OFF

For example, the following commands

cmake .. -GNinja -DMPI=ON

cmake --build .

will configure SWASH to be built created by Ninja that supports parallel computing using
the MPI paradigm. Note that CMake will check the availability of MPI libraries within
your environment.

The system default Fortran compiler (e.g., f77, g95) can be overwritten as follows

cmake .. -DCMAKE_Fortran_COMPILER=/path/to/desired/compiler

Finally, if CMake fails to configure your project, then execute

cmake .. -DCMAKE_VERBOSE_MAKEFILE=ON

which will generate detailed information that may provide some indications to debug the
build process.

Installation 19

3.3.3 Clean up the build files

To remove the build directory and all files that have been created after running cmake

--build ., run at the top level of your project the following command:

cmake -P clobber.cmake

(The -P argument passed to CMake will execute a script <filename>.cmake.)

20 Chapter 3

Chapter 4

User dependent changes and the file
swashinit

SWASH allows you to customize the input and the output to the wishes of your depart-
ment, company or institute or yourself. This can be done by changing the settings in the
initialisation file swashinit, which is created during the first time SWASH is executed on
your computer system. The changes in swashinit only affect the runs executed in the
directory that contains that file.

A typical initialisation file swashinit may look like:

6 version of initialisation file

Delft University of Technology name of institute

3 command file ref. number

INPUT command file name

4 print file ref. number

PRINT print file name

4 test file ref. number

test file name

6 screen ref. number

99999 highest file ref. number

$ comment identifier

[TAB] TAB character

\ dir sep char in input file

/ dir sep char replacing previous one

7 default time coding option

-1 grid partitioning option

1 option to merge output files

100 speed of processor 1

100 speed of processor 2

100 speed of processor 3

21

22 Chapter 4

Explanation:

• The version number of the initialisation file is included in the file so that SWASH
can verify whether the file it reads is a valid initialisation file. The current version is
6.

• The initialisation file provides a character string containing the name of the institute
that may carry out the computations or modifying the source code. You may assign
it to the name of your institute instead of Delft University of Technology, which
is the present value.

• The standard input file and standard print file are usually named INPUT and PRINT,
respectively. You may rename these files, if appropriate.

• The unit reference numbers for the input and print files are set to 3 and 4, respectively.
If necessary, you can change these numbers into the standard input and output unit
numbers for your installation. Another unit reference number is foreseen for output
to screen and it set to 6. This is useful if print output is lost due to abnormal end of
the program, while information about the reason is expected to be in the print file.
There is also a unit number for a separate test print file. In the version that you
downloaded from SWASH homepage, this is equal to that of the print file so that
test output will appear on the same file as the standard print output.

• The comment identifier to be used in the command file is usually ’$’, but on some
computer system this may be inappropriate because a line beginning with ’$’ is inter-
preted as a command for the corresponding operating system (e.g., VAX systems).
If necessary, change to ’ !’.

• To insert [TAB] in the initialisation file, just use the TAB key on your keyboard.

• Depending on the operating system, the first directory separation character in swashinit,
as used in the input file, may be replaced by the second one, if appropriate.

• Date and time can be read and written according to various options. The following
options are available:

1. 19870530.153000 (ISO-notation)

2. 30-May-87 15:30:00

3. 05/30/87 15:30:00

4. 15:30:00

5. 87/05/30 15:30:00

6. 8705301530 (WAM-equivalence)

7. 153000.000

User dependent changes and the file swashinit 23

Option 7 only represents the time (hours, minutes, seconds and milliseconds) and
hence, does not taken into account the date. Note that this option can not be used
for a simulation longer than a day. In most cases, this option is the appropriate
one for SWASH. Note that the ISO-notation has no millenium problem, therefore
the ISO-notation is recommended. In case of other options, except the last one, the
range of valid dates is in between January 1, 1911 and December 31, 2010 (both
inclusive).

• For a parallel MPI run the computational grid needs to be decomposed into a number
of subdomains. This decomposition is based on the grid partition. Two methods are
available:

1. stripwise manner

2. orthogonal recursive bisection (ORB)

The ORB method starts with a single part (the entire domain) after which each
part is recursively partitioned by bisecting it, until all parts have been created. The
bisection direction is swapped in each direction. This partitioning method can only
be applied in the 2D multi-layered mode. In the other modes, 1D or depth-averaged,
a stripwise partitioning will be applied. This will be done automatically by choosing
option −1. Otherwise, you may choose option 1 for stripwise partitioning along the
x− or y−axis, option 2 for ORB partitioning, option 3 for stripwise partitioning
along the x−axis or option 4 for stripwise partitioning along the y−axis.

• In case of a parallel MPI run, SWASH either merge the processor-dependent out-
put files into a single file and subsequently delete the individual files, or keep the
processor-dependent output files on disk. The option values are:

0. do not merge the processor-dependent output files

1. merge the processor-dependent output files

Option 1 is the default.

• In case of a parallel MPI run at the machine having a number of independent pro-
cessors, it is important to assign subdomains representing appropriate amounts of
work to each processor. Usually, this refers to an equal number of grid points per
subdomain. However, if the computer has processors which are not all equally fast
(a so-called heterogeneous machine), then the sizes of the subdomains depend on the
speed of the processors. Faster processors should deal with more grid points than
slower ones. Therefore, if necessary, a list of non-default processor speeds is provided.
The given speeds are in % of default = 100%. As an illustrating example, we have
two PC’s connected via an Ethernet switch of which the first one is 1.5 times faster
than the second one. The list would be

24 Chapter 4

150 speed of processor 1

100 speed of processor 2

Based on this list, SWASH will automatically distribute the total number of active
grid points over two subdomains in an appropriate manner. Referring to the above
example, with 1000 active points, the first and second subdomains will contain 600
and 400 grid points, respectively.

Chapter 5

Run instructions

In this chapter it is assumed that you have a built SWASH available on your computer,
either after installation as described in Chapter 3, or downloaded from the SWASH website
(for Windows).

Before running SWASH you must first complete a command file. Consult the SWASH
User Manual how to specify the various settings and instructions to SWASH concerning
the (input) grids, boundary conditions, physics, numerics and output. To help you in edit-
ing a command file for SWASH input, the file swash.edt is provided which contains the
complete set of commands.

After completing the command file, you may run SWASH. Two command-line utilities
are provided among the source code, one for running SWASH on the Windows platform,
called swashrun.bat, and one for running SWASH on the Linux/UNIX platform, called
swashrun. Basically, the run procedure carries out the following actions:

• Copy the command file with extension sws to INPUT (assuming INPUT is the standard
file name for command input, see Chapter 4).

• Run SWASH.

• Copy the file PRINT (assuming PRINT is the standard file name for print output, see
Chapter 4) to a file which name equals the command file with extension prt.

On other operating system a similar procedure can be followed. For parallel MPI runs, the
program mpirun or mpiexec may be needed instead (usually provided in an MPI distribu-
tion).

Before calling the run procedure, the environment variable PATH need to be adapted by
including the pathname of the directory where swash.exe can be found. In case of Win-
dows, this pathname can be specified through the setting Environment Variables. (Hit the
Window key plus R to get command prompt. Then type sysdm.cpl, go to Advanced and

25

https://swash.sourceforge.io/download/download.htm

26 Chapter 5

select Environment Variables. Note that you must be an administrator in order to modify
an environment variable.) In case of Linux or UNIX running the bash shell (sh or ksh),
the environment variable PATH may be changed as follows:

export PATH=${PATH}:/usr/local/swash

if /usr/local/swash is the directory where the executable swash.exe is resided. In case
of the C shell (csh), use the following command:

setenv PATH ${PATH}:/usr/local/swash

If appropriate, you also need to add the directory path where the bin directory of MPI is
resided to PATH to have access to the command mpirun or mpiexec.

The provided run utilities enable the user to properly and easily run SWASH both serial
as well as parallel. Note that for parallel MPI runs, the executable swash.exe should be
accessible by copying it to all the multiple machines or by placing it in a shared directory.
When running the SWASH program, the user must specify the name of the command
file. However, it is assumed that the extension of this file is sws. Note that contrary to
Linux/UNIX, Windows does not distinguish between lowercase and uppercase characters
in filenames. Next, the user may also indicate whether the run is serial or parallel. In case
of Windows, use the run procedure swashrun.bat from a command prompt:

swashrun filename [nprocs]

where filename is the name of your command file without extension (assuming it is sws)
and nprocs indicates how many processors need to be launched for a parallel MPI run
(do not type the brackets; they just indicate that the parameter nprocs is optional). By
default, nprocs = 1.

The command line for the UNIX script swashrun is as follows:

./swashrun -input filename -mpi n

where filename is the name of your command file without extension. Note that the script
swashrun need to be made executable first, as follows:

chmod +rx ./swashrun

The parameter -mpi n specifies a parallel run on n cores using MPI. The parameter -input
is obliged, whereas the parameter -mpi n can be omitted (default: n = 1). To redirect
screen output to a file, use the sign >. Use an ampersand to run SWASH in the background.
An example:

./swashrun -input l51con01 -mpi 4 > swashout &

Run instructions 27

For a parallel MPI run, you may also need a machinefile that contains the names of
the nodes in your parallel environment. Put one node per line in the file. Lines starting
with the # character are comment lines. You can specify a number after the node name
to indicate how many cores to launch on the node. This is useful e.g., for multi-core
processors. The run procedure will cycle through this list until all the requested processes
are launched. Example of such a file may look like:

here, eight processes will be launched

node1

node2:2

node4

node7:4

Note that for Windows platforms, a space should be used instead of a colon as the separ-
ation character in the machinefile.

SWASH will generate a number of output files:

• A print file with the name PRINT that can be renamed by the user with a batch (DOS)
or script (UNIX) file, e.g. with the provided run procedures. For parallel MPI runs,
however, a sequence of PRINT files will be generated (PRINT-001, PRINT-002, etc.)
depending on the number of processors. The print file(s) contain(s) the echo of the
input, information concerning the iteration process, possible errors, timings, etc.

• Numerical output (such as table and block output) appearing in files with user
provided names.

• A file called Errfile (or renamed by the run procedures as well as more than one
file in case of parallel MPI runs) containing the error messages is created only when
SWASH produces error messages. Existence of this file is an indication to study the
results with more care.

• A file called ERRPTS (or renamed by the run procedures as well as more than one
file in case of parallel MPI runs) containing the grid points, where specific errors
occured during the calculation, such as non-convergence of an iterative matrix solver.
Existence of this file is an indication to study the flow in that grid point with more
care.

28 Chapter 5

Chapter 6

Testing SWASH

The SWASH package consists of one executable file (swash.exe), a command file (swash.edt)
and a run procedure (swashrun.bat or swashrun). The executable for Windows can be
obtained from the SWASH web site, but see Chapter 5 for further details. The input
and output to a number of test problems is provided on the SWASH homepage. The
files with extension sws are the command files for these tests; the files with extension bot

are the bottom files for these tests, etc. This input can be used to make a configuration
test of SWASH on your computer. Compare the results with those in the provided plot files.

To run the SWASH program for the test cases, at least 500 MBytes of free internal memory
is recommended. For more realistic cases 1 to 2.5 GBytes may be needed, whereas for more
simple 1D cases significant less memory is needed (less than 100 MBytes).

29

	Introduction
	The material

	Use of patch files
	Installation
	Introduction
	Classic build instructions
	Configuring the build
	Building SWASH using GNU make
	Building SWASH from scratch
	Building with MPI support

	Building SWASH with CMake
	Build instructions
	Configuring the build
	Clean up the build files

	User dependent changes and the file swashinit
	Run instructions
	Testing SWASH

