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Chapter 1

Introduction

The main goal of the SWASH model is to solve the nonhydrostatic, nonlinear, shallow water
equations on a regular grid.

to be filled in...

1.1 Historical background

This section is under preparation.

1.2 Purpose and motivation

The purpose of this document is to provide relevant information on the mathematical
models and numerical techniques for the simulation of shallow water in coastal regions.
Furthermore, this document explains the essential steps involved in the implementation of
various numerical methods, and thus provides an adequate reference with respect to the
structure of the SWASH program.

1.3 Readership

This document is, in the first place, addressed to those, who wish to modify and to extend
mathematical and numerical models for shallow water problems. However, this material is
also useful for those who are interested in the application of the techniques discussed here.
The text assumes the reader has basic knowledge of analysis, partial differential equations
and numerical mathematics and provides what is needed both in the main text and in the
appendices.

1



2 Chapter 1

1.4 Scope of this document

SWASH is a general-purpose numerical tool for simulating unsteady, non-hydrostatic, free-
surface, rotational flow and transport phenomena in coastal waters as driven by waves, tides,
buoyancy and wind forces. It provides a general basis for describing wave transformations
from deep water to a beach, port or harbour, complex changes to rapidly varied flows, and
density driven flows in coastal seas, estuaries, lakes and rivers.

1.5 Overview

The remainder of this document is subdivided as follows: In Chapter 2 a review of
considerations from the Hamiltonian formalism and algebraic topology of the inviscid
shallow water equations is provided. This chapter explains why the Arakawa C-grid
discretization method was chosen as the basis for the design of SWASH. In Chapter 8 the
three-dimensional shallow water equations used in SWASH are presented. These underlying
equations and the derivation thereof, i.e. the layer-averaged equations, have been discussed
earlier in the Technical documentation of TRIWAQ-in-SIMONA [109] and was written by
Marcel Zijlema in 1998. After that this outline has been applied successfully in SWASH.
See also the papers [114, 115, 86, 116]. In Chapter 9 the main characteristics of the finite
difference method for the discretization of the governing equations in horizontal planes are
outlined. Various differencing schemes for spatial propagation are reported. Chapter 10 is
concerned with discussing several boundary conditions and their implementation. Chapter 11
is devoted to the linear solvers for the solution of the resulted linear systems of equations.
Chapter 12 deals with some consideration on parallelization of SWASH on distributed
memory architectures.

This document, however, is not intended as being complete. Although, this document
describes the essential steps involved in the simulation of waves, so that the user can see
which can be modified or extended to solve a particular problem properly, some subjects
involved in SWASH are not included. Below, a list of these subjects is given, of which the
information may be available elsewhere (e.g. journal and proceedings papers):

• wave damping induced by vegetation,

• partial reflection and transmission,

• subgrid approach for 3D wave-induced currents,

• floating objects.

1.6 Acknowledgements

The SWASH team are grateful to the original authors from the very first days of SWASH
which took place at the Delft University of Technology in Delft, The Netherlands in 2002:
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Guus Stelling and Marcel Zijlema.

We further want to acknowledge all contributors who helped us to improve SWASH, reported
bugs, and tested SWASH thoroughly: Pieter Smit, Dirk Rijnsdorp, Tomo Suzuki, Panagiotis
Vasarmidis, and Joao Dobrochinski.

We are finally grateful to all those other people working on the Public Domain Software
without which the development of SWASH would be unthinkable: Linux, Intel, GNU F95,
LATEX, MPICH, Perl and many others.
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Chapter 2

Physics-compatible discretizations on
simplicial and cubical meshes

2.1 Introduction

This chapter deals with the numerical solution of the two-dimensional nonlinear shallow
water equations that form the basis for SWASH. The spatial discretization is based on the
staggered Arakawa C-grid finite difference method for orthogonal triangular, rectangular and
curvilinear meshes. It is known for a long time that this method exhibits beneficial properties
in a wide range of shallow water applications, including nonlinear wave transformation as
characterized by energy transfer between the different wave components. This enhances the
robustness of the SWASH model. This chapter explains the reasons why this is so. In the
following sections below, we will set out a number of relevant topics in depth which are
crucial for the exposition of this chapter. The topics covered are related to Hamiltonian
formalism and algebraic topology.

There are two issues that play a key role. First there is the issue of the nonlinear
computational instability that frequently occurs in the numerical simulation of highly
nonlinear shallow water systems, and secondly, the importance of primary and secondary
conservation properties that appear naturally in physics and geometry. This dual role
underlies a growing body of literature which clearly demonstrates that mimicking the
conservation properties of the continuous partial differential equations (PDEs) at the
discrete level eliminates the problem of nonlinear instability.

One of the earliest studies on nonlinear computational instability of finite difference
schemes was conducted by Phillips in the 1950s [75]. This phenomenon contrasted with
the usual (linear) stability that can easily be controlled by reducing the time step. Phillips
explained this then new kind of instability in terms of aliasing. Numerical waves shorter
than two grid sizes are misinterpreted by the finite grid as long waves and thus create
spurious interactions towards high wave numbers which, according to Phillips, cause the
observed instability. Since the nonlinear instability could not be eliminated by decreasing
the time step, Phillips applied a smoothing technique to diminish the instability.

5



6 Chapter 2

Although Phillips “aliasing” clarification could be a plausible one, however, in reality it
does not. The solution to the problem of nonlinear computational instability came from
Lilly [50] and Arakawa [1]. They demonstrated the cause of this instability to be the lack of
conservation of kinetic energy (and vorticity), despite the presence of aliasing errors. The
spectral analysis of Lilly [50] further substantiated that a correct redistribution of energy
over the scales of motion is closely related to the conservation of kinetic energy and, in turn,
eliminates the nonlinear instability. Arakawa later on showed that the staggered C-grid
approach has proven to be effective in eliminating the problem of nonlinear computational
instability [2, 3].

Later studies demonstrated that the form of the nonlinear momentum advection operator
is decisive for both the conservation of kinetic energy at discrete level and the alteration
of aliasing errors present in finite difference and finite volume methods [7, 44, 58] and
[17]. (The source of aliasing errors is the numerical evaluation of the product of two (or
more) field variables on a computational mesh.) Of the four usual and analytically (but
not numerically) equivalent formulations, namely, the divergence (or conservation) form,
the rotational form, the advective (or non-conservative) form and the skew-symmetric
form (defined as the average of the divergence and advective forms), the use of both the
skew-symmetric and the rotational forms of the advection terms, approximated with second
(or fourth) order central differencing, leads to the conservation of kinetic energy (locally
and globally) because these forms satisfy the integration-by-parts rule in a discrete sense
[44, 58]. Moreover, the analyses of Kravchenko and Moin [44] and Morinishi et al. [58] show
that neither the divergence form nor the advective form conserves kinetic energy in finite
difference computations, even on a uniform grid, unless they comply with a discrete product
rule of differentiation. In that case, these forms can be rewritten into a skew-symmetric
form, thus conserving kinetic energy locally.

Many numerical studies [35, 44, 24, 16, 68, 38] also revealed the outstanding performance
of the skew-symmetric form of momentum advection in terms of a strong reduction of
aliasing errors in finite difference calculations using central schemes while the (energy-
conserving) rotational form typically yields the highest aliasing error. Furthermore, the
simulations with the skew-symmetric form typically produce physically accurate and stable
results regardless of whether the flow is sufficiently resolved or not [99, 100]. We will address
the topics regarding the skew symmetry and energy conservation in detail later.

The shallow water equations involve a number of differential operators such as the
gradient and the divergence. Basically, such operators are mathematical constructs based
on the notion of limit (infinitesimal cube contracting to a point) and contain a number of
hidden geometrical and physical structures, such as symmetries and conservation properties.
The key purpose of algebraic topology in the present work is to reveal these mathematical
structures by studying geometric objects. This then forms the starting point for the
construction of discrete counterparts of the continuous differential operators, namely, the
gradient, curl, and divergence. These operators are referred to as grad, curl and div,
respectively.

While there ary many ways to approximate the PDEs and their associated operators, such
as the finite difference, finite volume, and finite element methods, algebraic topology offers a
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mimetic approach to their construction in the sense that discrete operators truly mimic the
behavior of the differential operators regardless of the mesh type and resolution [36]. Such
mimetic discretizations also preserve vector calculus identities, including curl grad = 0
and div curl = 0, and symmetry relations such as curl = curlT and div = −gradT.
For instance, the latter antisymmetry property is closely related to the Hamiltonian
structure of the inviscid shallow water equations which means that the total energy of the
system is conserved. As we will see later, by embedding these discrete structures into a
discretization process, they obey a discrete version of integration-by-parts and product rules,
thus preserving the conservation properties of the PDEs. As a result, the corresponding
discretization captures the essential physics of the PDEs and generally has a stabilizing
effect on the solution of PDEs. This is advantageous mainly because it is not based on
asymptotic arguments to ensure consistency with the continuous (and smooth) PDEs in
the traditional sense. A mere consistency and linear stability check is often not sufficient,
especially for nonlinear under-resolved problems.

The development of mimetic discretizations is an active field of research where it is
linked to the high demand for physically reliable simulation models to describe and predict
complex systems arising in oceanographic and atmospheric flow problems, direct numerical
and large-eddy simulations of turbulent flows, but also computer graphics. Some of the
contributions in this area have come in the form of mimetic finite differences [8, 90, 51], the
summation by parts (SBP) method [87], the support operators method (SOM) [36], mimetic
spectral elements [18, 19, 45, 67], discrete exterior calculus (DEC) [33, 22, 23, 34, 56], and
symmetry-preserving discretizations [76, 99, 29, 100, 97, 93, 10]. Such numerical techniques
are especially useful when grid refinement or increasing the order of the discretization
accuracy is insufficient to resolve the wide range of scales of nonlinear motions (e.g. high-
Re turbulent flows, multi-scale atmospheric flows, nonlinear wave-wave and wave-current
interactions). In particular, sufficient control of aliasing errors is ensured in the numerical
simulations by these methods. Also, nonlinear energy transfer between scales is generally
respected by mimetic discretizations which not only promotes the physical fidelity but also
aids in the stability of the model simulation.

Let us put this into perspective by situating these mimetic discretizations in relation
to other conventional finite difference and finite volume methods. The latter methods
are widely adopted for approximating the shallow water equations on horizontal grids.
Arakawa and Lamb[2] define five grid systems (A to E) based on the horizontal staggering
of the primitive variables (the velocity vector and the water level). Of these five grids,
the unstaggered (or colocated) Arakawa A-grid, the semi-staggered Arakawa B-grid and
the staggered Arakawa C-grid are the most prominent ones in CFD and computational
hydraulics. With the A-grid, the water level and the components of the velocity vector
are stored at the same grid vertices or cell centers. The B-grid places water levels at the
corners of cells and the velocity vector at the centers of cells or the other way around. The
C-grid evaluates the normal components of the horizontal velocity at the centers of the cell
faces and the water levels at the cell centers.

The usual strategy in the development of these discrete frameworks is that first a
discretization method is constructed in a mathematical fashion using high-resolution
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schemes but without an explicit reference to the physical properties that underlie the
continuous flow field problem. Next, certain numerical (mostly linear) analysis tools are
utilized to prove its accuracy, stability and convergence in the sense of the Lax’s equivalence
theorem. The hope is then that a numerical solution to the considered PDEs is obtained
that is physically realistic, especially when problems with strong nonlinearities [107, 106]
are relevant. There are, however, three issues that complicate matters related to controlling
the convergence error by mesh refinement.

First, there are ambiguities regarding the validity of the equivalence theorem in the case
of nonlinear PDEs. At least, it seems that this theorem can only provide the necessary
conditions for convergence. A consistent and stable high order scheme can still fail to
capture physically consistent results for nonlinear PDEs.

Second, a high order accurate approximation is assumed to be better in the sense that
its solution converges faster compared to a low order scheme owing to the lower truncation
errors. However, this premise is exceptional, especially when nonlinearity plays a significant
role. A key aspect of this that is often overlooked is the necessity to have mesh spacing
substantially small to achieve the nonlinear solution convergent at best. For example,
the convergence tests of Verstappen and Veldman [99] demonstrated that a fourth order
discretization is not more accurate than its second order equivalent on relatively coarse
grids.

Third, the numerical method established in this way may not obey some of the con-
servation laws, identities and symmetries and can thus act as a spurious source of mass,
momentum or energy. For example, both A-grid and B-grid discretizations ultimately build
on approximating the conservation of mass and energy. Furthermore, symmetry relations,
like div = −gradT, may not be satisfied while the associated discrete operators support
spurious computational (or checkerboard pressure) modes [58, 32, 25]. These unphysical
modes are typically inert at the grid scale and can contaminate the numerical solution in the
long run as various nonlinear processes, including physics parametrizations and bathymetric
forcing, can excite them [48]. Though colocated (A-grid) and semi-staggered (B-grid)
discretization methods routinely suppress erroneous grid-scale oscillations by some degree
of non-physical dissipation, either upwind differencing or space-centred approximation
with artificial viscosity, such kind of regularization usually have difficulty to moderate the
stationary spurious modes as they do not propagate.

There is a scarcity of literature that discusses the development of colocated (A-)grid
discretizations of the inviscid shallow water equations on general meshes. By contrast,
the colocated central discretization method that employs the classical Von Neumann
and Richtmyer’s artificial viscosity [102] or its variants (e.g. the successful JST scheme
of Jameson [37]) for identifying shock waves is very useful for solving the compressible
Euler equations at high Mach numbers. This suitability is explained by the fact that the
associated physics typically involves a high energetic primary mode and relatively small
higher modes. In turn, the related nonlinear cascade of wave energy is less pronounced
than that of incompressible flows, which allows the use of less far-reaching discretization
methods, including the Lax-Wendroff type method [50] and the A-grid method.

The C-grid discretization is superior to both A-grid and B-grid regarding the accuracy
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and stability in solving the highly nonlinear shallow water equations. Staggered C-grid
schemes are practically stable as they exactly conserve discrete analogues of mass and
energy and do not typically generate spurious modes. An example is the celebrated finite
difference scheme of Arakawa and Lamb [3] for the rotating shallow water equations on
Cartesian staggered grids. It does not only conserve mass and energy exactly but also
vorticity and enstrophy. Furthermore, this staggered scheme is completely free of unphysical
pressure modes. In this sense, the Arakawa and Lamb scheme can be considered as one of
the earliest mimetic discretization methods for free surface flows.

Despite these advantages, staggered C-grid methods tend to have a low order of trun-
cation error, especially on nonuniform meshes. Yet, they often produce smaller global
discretization errors than other traditional (usually non-mimetic) methods of the same
or higher order even on nonuniform grids [99, 100]. This is because of the fact that the
associated discrete operators exactly represent conservation properties (mass and energy),
vector calculus identities, including the vanishing of the curl of the gradient of any scalar
field, and fundamental symmetries, most notably the divergence is the negative transpose of
the gradient. These specific properties permit to control aliasing errors and also contribute
at improving the physical accuracy of under-resolved problems. In essence, they generally
improve simulation fidelity and thus potentially increase physical reliability regardless of
the chosen resolution in the simulations.

Additionally, previous studies like Manteuffel and White [52] have demonstrated that
low order schemes can easily achieve second order accuracy on nonuniform meshes where
the mesh spacing is stretched by a bounded ratio. Still, high order acurrate schemes can be
desirable when one wants to avoid the use of excessively fine grids, especially Cartesian
grids. It should be noted, however, that unstructured mesh methods typically do not allow
for ease of implementation of high order discretizations as they do not take full advantage of
higher order accuracy that can be easily achieved on structured rectangular grids. On the
other hand, unstructured meshes have their unique quality to easily enhance the flexibility
by allowing local mesh refinements. For this reason, we will also present an extension of
the classical staggered C-grid approach to unstructured triangular grids. This extended
method is described in detail in Chapter 5.

Over the years, successful staggered C-grid schemes have been developed for the simula-
tion of incompressible flows on curvilinear staggered grids [104, 95, 113] and on unstructured
triangular Delaunay-Voronoi meshes [28, 64, 65, 15, 70, 41], modelling of large-scale ocean
and small-scale coastal flows on both orthogonal curvilinear grids, see, e.g. [47, 83, 12, 81,
84, 116], and unstructured triangular meshes, e.g. [13, 14, 26, 88, 43, 39, 42, 31, 111]. Addi-
tionally, many papers have been published over the last few decades on the use of Arakawa
C-grid discretizations for large-scale atmospheric flows on the sphere using arbitrarily
structured (hexagonal) meshes, see, e.g. [9, 89, 91, 77, 80, 18, 90]).

This chapter provides support for a physically based strategy to develop numerical
methods that are capable of dealing with symmetries and conservation properties at a
discrete level. These methods do not discretize the continuous PDEs in the traditional
sense with scalars and vectors as fundamental entities of differential calculus. Rather, they
are driven by the topological interpretation of the physical fields as discrete differential
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forms. Such forms are the integrals of the physical quantities over the various geometric
elements (points, curves, planes and volumes) and constitute a discrete representation for
solution fields over discretized (mesh) objects (vertices, edges, faces, and cells).

The notion of discrete differential forms is at the heart of algebraic topology. The frame-
work of algebraic topology provides the basis for the development of mimetic discretizations
used in this work. As we will see later on, this goal serves as the basis and justification for
using staggered grids. The importance of the discrete forms becomes apparent in identifying
which parts of the PDEs are conservation laws that do not depend on any notion of a
metric, and which parts are relationships that are approximative by nature such as the
material constitutive relations and the local relationships between the various physical
quantities due to inhomogeneous media (e.g. nonuniform depth and fluid density). The
discretizations are then constructed to exactly satisfy the former, that is, without any
discretization error involved, and accurately approximate the latter. As a result, they aim
to mimic the fundamental properties of the continuous differential operators grad, curl and
div. Furthermore, certain crucial symmetry relations, like for instance div = −gradT, are
respected at the discrete level, and these, in turn, contribute to the nonlinear computational
stability.

This chapter begins with the formulation of the inviscid nonlinear shallow water equa-
tions; they are covered in detail in Section 2.2. Next, Section 2.3 reveals the mathematical
structure of the governing equations, namely, the Hamiltonian which represents the total
energy of the system, and then deals with some theoretical aspects of the Hamiltonian
formalism. The use of the Hamiltonian form is beneficial since it provides conditions for
the stability of the spatial discretization of the shallow water equations.

Mimetic discretization methods aim to preserve essential geometrical and physical
structures in a discrete setting. The core rationale here is the agreement of the numerical
solution with physical measurements rather than convergence to an exact solution of
PDEs. As a preliminary to this approach, we informally introduce the two essential
notions of differential geometry, namely, differential forms and generalized Stokes’ theorem.
These physically based concepts are addressed in Section 2.4. This is then followed by
an extensive review of some fundamental concepts from algebraic topology, which is the
discrete counterpart of differential geometry. They serve as the building blocks of the
discretization infrastructure. Section 2.5 elaborates upon this matter.

Finally, Section 2.6 discusses a general mimetic framework for the inviscid nonlinear
shallow water equations which will be used to derive the staggered Arakawa C-grid for
rectilinear grids in Chapter 3, for curvilinear grids in Chapter 4, and for unstructured
triangular meshes in Chapter 5.

This chapter (and also Chapters 3, 4 and 5) focusses on the spatial discretization in
the horizontal for both 2DH and 3D shallow water equations. Discretization in the vertical
dimension for 3D flow domains will be dealt with in Chapter 8.
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2.2 Inviscid shallow water equations

(Un)SWASH solves the two- and three-dimensional nonlinear shallow water equations. These
equations describe the behavior of a shallow incompressible fluid layer and are suitable
to model hydrodynamics in coastal seas, estuaries, lakes and rivers. They are derived
from the depth-integrated Euler or Navier-Stokes equations under the hydrostatic pressure
assumption. The equations of motion are commonly written in the language of vector
calculus.

For applications to water waves we deal with the barotropic flow of an incompressible
fluid in a two-dimensional bounded domain, denoted by Ω ⊂ R2, with a thin layer of
water between a rigid bottom at z = −d(x) and a single-valued free surface ζ(x, t) where
x = (x, y) ∈ Ω indicates the horizontal position. The inviscid shallow water equations in
the flux-form are given by

∂h

∂t
+∇ · q = 0 (2.1)

∂hu

∂t
+∇ · (q⊗ u) = −gh∇ζ (2.2)

where h = ζ + d is the water depth and u = (u, v) is the depth-averaged flow velocity
vector with the components u(x, t) and v(x, t) along the x and y coordinates, respectively,
as given by

u (x, t) =
1

h

∫ z=ζ

z=−d

v (x, z, t) dz

with v(x, z, t) the three-dimensional flow velocity. Furthermore, q = hu is the mass
flux, ∇ = (∂x, ∂y) is the two-dimensional gradient operator on Ω, and finally, g is the
gravitational acceleration.

Both field functions h(x, t) and u(x, t) are at least piecewise continuous on Ω. Note
that for water waves the three-dimensional flow is considered to be irrotational, that is,
∇3D × v = 0 with ∇3D = (∂x, ∂y, ∂z). However, ∇× hu ̸= 0. The governing equations are
combined with appropriate boundary conditions. This is discussed in Chapter 10.

Eqs. (2.1) and (2.2) naturally describe the water wave motion on top of the ambient
flow. The essential terms here are the pressure gradient term in the right-hand side of
Eq. (2.2) and the divergence of the mass flux, the second term of Eq. (2.1). Mathematically,
they are adjoint to each other; see Section 2.3 for further clarification.

The quantity hu in the first term of Eq. (2.2) represents the depth-integrated velocity
along a path of fluid motion while the pressure gradient is a driving force due to the surface
slope along the flow line. The second divergence term of Eq. (2.2) can be expanded as

∇ · (q⊗ u) = (q · ∇) u+ (∇ · q) u (2.3)

The first term on the right-hand side describes advection in the background flow while the
second term is linked to the wave dynamics. Additionally, the combination of the terms
∇ · (q⊗ u) and gh∇ζ in the momentum equation (2.2) characterizes the embedding of the
multi-scale interactions between the various wave components.
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As demonstrated above, the depth-averaged velocity u is transported by the mass flux q.
Although the reversed statement, that is, hu = q is the conserved quantity that is advected
by the velocity u, might makes sense, as suggested by Eq. (2.2), it is actually wrong from a
physical point of view. This is because hu is not the physical entity of a fluid particle, but
instead the quantity u is, or rather v, which is conserved by advection.

As a final note, Eqs. (2.1)−(2.2) are written in the conservation form. The physical
meaning of this formulation relies on the inclusion of the formation of shocks and hydraulic
jumps. However, for large-scale applications in coastal and ocean engineering, the shallow
water equations are typically expressed in the non-conservation form. Thus, combining
Eq. (2.3) and Eq. (2.1), next substituting into Eq. (2.2) while applying the product rule to
the term ∂hu/∂t, we obtain the following momentum equation

∂u

∂t
+ (u · ∇) u = −g∇ζ (2.4)

In this regard, relevant forces should be included, such as viscous stresses, frictional forces
(wind shear and bottom roughness) and the Coriolis force due to the Earth’s rotation. More
details about these forces are provided in Chapter 3.

2.3 Hamiltonian formulation

In this section we demonstrate how, using the Hamiltonian formalism, we can systematically
derive conditions required for the conservation of energy that can be used to construct
mimetic discretizations of the inviscid nonlinear shallow water equations on non-Cartesian
orthogonal meshes. Though energy is usually not preserved in the majority of coastal water
systems, energy conservation conceived as a constraint is relevant in view of the spatial
discretization for two reasons. First, it can guarantee the stability of the discretization.
Second, on physical grounds, it ensures that energy is conservatively transferred from low
wave frequencies to high frequencies, which then causes waves to break, and dissipation of
wave energy. This nonlinear energy cascade requires certain contributions to the governing
equations (2.1)−(2.2) to be independently energy conserved, namely, the pressure gradient
and the advective transport of momentum. When mimicking this requirement at a discrete
level, it thus reflects the physical fidelity of the discretization.

Like many physical systems, the inviscid, barotropic shallow water equations (2.1)−(2.2)
possess a Hamiltonian structure (see, e.g. [21]). In the absence of shocks and a horizontal
frictionless bed, this system conserves the total energy, or Hamiltonian, which is the sum of
the kinetic energy and gravitational potential energy per unit volume∫

Ω

dx

∫ z=ζ

z=−d

dz

[
1

2
u · u+ gz

]
Since the equations of motion are described using the field variables h and u, their
Hamiltonion structure is of a non-canonical (or generalized) form. This is explained further
below.
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The exposition starts by first considering an infinite-dimensional real vector space V
of fields equipped with an inner product (called a Hilbert space) defined on some domain
x ∈ Ω in R2. We establish the inner product ⟨· , ·⟩ : V × V → R in the following way. We
have

⟨f, g⟩ =
∫
Ω

f g dx (2.5)

for scalar fields f and g on Ω, and

⟨v,w⟩ =
∫
Ω

v ·w dx (2.6)

for vector fields v and w on Ω with · denoting the standard element-wise dot product. Note
that the inner product is positive definite and symmetric.

Next, a key assumption is made that the scalar and vector fields have a compact support,
that is, they vanish on the boundary of Ω. Let us integrate the following vector calculus
identity over Ω,

∇ · (fv) = f∇ · v + (∇f) · v (2.7)

and subsequently apply the divergence theorem. We obtain∫
Ω

f∇ · v dx+

∫
Ω

(∇f) · v dx =

∫
Ω

∇ · (fv) dx =

∫
∂Ω

fv · dS

with the last term indicating the surface integral of fv over the boundary of Ω and dS the
surface normal. Since the boundary term is zero, we infer

⟨f,∇ · v⟩ = −⟨∇f,v⟩ (2.8)

which implies that the adjoint of the divergence operator is minus the the gradient operator.
Eq. (2.8) displays the property of skew (or anti) symmetry. A more general form of

this property that is useful to the discretization process is the following. Let be given a
real-valued operator (or tensor) A : V → V . This operator is called skew-symmetric when

⟨u, Av⟩ = −⟨Au,v⟩ , ∀u ,v ∈ V (2.9)

As the inner product is symmetric, this implies ⟨u, Au⟩ = 0 for any u ∈ V. The converse
is also true, that is, if for a given operator A, we have ⟨u, Au⟩ = 0, then this operator is
skew-symmetric. The importance of the antisymmetry relations (2.8) and (2.9) will be
discussed later in this section.

Below, we employ some relevant concepts of the Hamiltonian formalism that appear to
be useful for the analysis of conservation properties. For an introducton, see e.g. [79]. In
particular, the building blocks for a Hamiltonian formulation that might be most relevant
here are a functional, a functional derivative, and a Poisson tensor.

A functional F is a mapping F : V → R, so that its arguments are field variables which,
in turn, are functions of space and time, and it assigns a real number to them. An example
of such a functional is integration of a function. Suppose u ∈ V , then we have, for instance,

F (u) =

∫
Ω

F (x,u,∇u) dx
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which yields a value of F depending on all the values taken by u on Ω, provided that the
function F is real-valued. (Note that F is an ordinary function. Also note that ∇u is
the derivative of u with respect to x, which is the Jacobian matrix.) We use calligraphic
capitals to denote functionals.

The functional (or variational) derivative of F with respect to u, denoted δF/δu, is
defined by

lim
ϵ→0

F (u+ ϵv)−F (u)

ϵ
=

d

dϵ
F (u+ ϵv)

∣∣
ϵ=0

= ⟨δF
δu

,v⟩ (2.10)

Let us take the above example of the functional F(u). To compute its functional derivative
it is assumed that F is continuously differentiable and v vanishes on the boundary of Ω.
Upon substitution yields

d

dϵ

∫
Ω

F (x,u+ ϵv,∇u+ ϵ∇v) dx
∣∣
ϵ=0

=

∫
Ω

(
∂F

∂u
· v +

∂F

∂∇u
· ∇v

)
dx

= ⟨∂F
∂u

,v⟩+ ⟨ ∂F

∂∇u
,∇v⟩

2.8
↓
= ⟨∂F

∂u
,v⟩ − ⟨∇ ·

(
∂F

∂∇u

)
,v⟩

so that the functional derivative is

δF
δu

=
∂F

∂u
−∇ ·

(
∂F

∂∇u

)
Note that the above derivation can be generalized to higher order derivatives [59].

Let p ∈ V be a state vector of (non-canonical) field variables describing an infinite-
dimensional system. Then this system is said to be Hamiltonian if there exists a functional
H(p) and a Poisson tensor J with certain properties such that the system is represented by

∂p

∂t
= J

δH
δp

(2.11)

This formulation is called the symplectic form. Note that this is just one of the many
equivalent ways of defining Hamiltonian both for canonical and non-canonical systems.

Let us elaborate further on the Hamiltonian description of Eqs. (2.1)−(2.2). We do this
by expressing it in Cartesian tensor notation. First, we denote the momentum density by
m = (mx,my)

T = (hu, hv)T and the mass flux by q = (qx, qy)
T = (hu, hv)T. We also use

the expression for free surface ζ = h− d. For the current shallow-water system, a suitable
Hamiltonian reads

H (h,mx,my) =
1

2

∫
Ω

[
m2

x +m2
y

h
+ gζ2

]
dx dy

whose functional derivatives are

δH
δh

=
1

2

(
−
m2

x +m2
y

h2
+ 2gζ

)
= −1

2

(
u2 + v2

)
+ gζ ,

δH
δmx

= u ,
δH
δmy

= v
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while the associated dynamics is controlled by the following Poisson tensor [21]

J = −

 0 ∂xh ∂yh
h ∂x mx ∂x + ∂xmx my ∂x + ∂ymx

h ∂y mx ∂y + ∂xmy my ∂y + ∂ymy

 (2.12)

Like the Hamiltonian formulation, there are many known forms of the Poisson tensor. The
current tensor is of the Lie-Poisson form which means that it (a) is linear in the state vector
(p1, p2, p3)

T ≡ (h,mx,my)
T, (b) is skew-adjoint (or skew-symmetric), Jij = −Jji, and (c)

satisfies the Jacobi condition [79, 21]

Jil
∂Jjk
∂pl

+ Jjl
∂Jki
∂pl

+ Jkl
∂Jij
∂pl

= 0

for i, j, k, l = 1, . . . , 3 (the Einstein convention is used). With the help of the antisymmetry
relation (2.8), it can be verified that the above three conditions are indeed met by the
tensor given by Eq. (2.12).

Now, if we use the components of the vector (hu, hv)T instead of (mx,my)
T, then

expanding the symplectic form in terms of the field variables h, ζ, hu and q results in

∂

∂t

 h
hu
hv

 = −

 0 ∂xh ∂yh
h ∂x hu ∂x + ∂xuh hv ∂x + ∂yuh
h ∂y hu ∂y + ∂xvh hv ∂y + ∂yvh

gζ − 1
2
(u2 + v2)
u
v



=

 −∂xqx − ∂yqy
−gh∂xζ − ∂x (uqx)− ∂y (uqy)
−gh∂yζ − ∂x (vqx)− ∂y (vqy)


which are indeed the shallow water equations (2.1)−(2.2).

For our purposes, we want to show that the Hamiltonian is conserved at all times.
To this end we consider a functional F(p) and examine variation of p to t, namely,
δp = p(x, t + δt) − p(x, t), so that in the limit δt → 0, we have δp = δt ∂p/∂t. Recall
Eq. (2.10), then one has

lim
δt→0

F (p+ δp)−F (p)

δt
=

dF
dt

= ⟨δF
δp

,
∂p

∂t
⟩

which describes the time evolution of F . Owing to Eq. (2.11) we observe that

dF
dt

= ⟨δF
δp

, J
δH
δp

⟩

Since J is skew-symmetric we conclude that

dH
dt

= ⟨δH
δp

, J
δH
δp

⟩ = 0
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implying the conservation of the Hamiltonian. This is basically a rendition of a special
case of the classical Noether’s theorem that relates the symmetry of a Hamiltonian system
under translation in time to the conservation of energy.

Let us examine the time evolution of the total energy of the conservative shallow-water
system in detail. We first discuss the contributions to the kinetic energy balance, followed
by those of the gravitational potential energy. The total kinetic energy is

Hkin =
1

2

∫
Ω

hu · u dx =
1

2
⟨u, hu⟩

while its rate of change is given by

dHkin

dt
= ⟨δHkin

δp
,
∂p

∂t
⟩ = ⟨δHkin

δh
,
∂h

∂t
⟩+ ⟨δHkin

δm
,
∂m

∂t
⟩

Evaluating the functional derivatives as δHkin/δh = −1
2
u · u and δHkin/δm = u and

substituting Eq. (2.2) into the above equation yield

d

dt
1
2
⟨u, hu⟩ = −1

2
⟨u,u ∂h

∂t
⟩ − ⟨u,∇ · (q⊗ u)⟩ − ⟨q,∇gζ⟩

The last term converses kinetic energy into potential energy.
Next, the total gravitational potential energy reads

Hpot =
1

2

∫
Ω

gζ2 dx =
1

2
g ⟨ζ, ζ⟩ = 1

2
g ⟨h− d, h− d⟩

The associated variational derivatives are then δHpot/δh = g(h−d) = gζ and δHpot/δm = 0.
The rate of change of potential energy is determined by the following expression

d

dt
1
2
g ⟨ζ, ζ⟩ = ⟨δHpot

δh
,
∂h

∂t
⟩+ ⟨δHpot

δm
,
∂m

∂t
⟩ = −⟨gζ,∇ · q⟩

Finally, the total energy is given by

H =
1

2
⟨u, hu⟩+ 1

2
g ⟨ζ, ζ⟩

The two contributions above can be combined into the equation of total energy as

0 =
dH
dt

= −1
2
⟨u,u ∂h

∂t
⟩ − ⟨u,∇ · (q⊗ u)⟩ − ⟨∇gζ,q⟩ − ⟨gζ,∇ · q⟩

By virtue of Eq. (2.8), the last two terms essentially cancel each other out, leaving only the
first two terms while their sum must be zero. This result can be written as

⟨u, 1
2

∂h

∂t
u+∇ · (q⊗ u)⟩ = 0



Physics-compatible discretizations on simplicial and cubical meshes 17

Let us define the operator A with

Au := ∇ · (q⊗ u)

and denote I as the identity tensor. (Note that we may write A = q · ∇+ (∇ · q) I.) Now,
the following must holds

⟨u,
[
A+ 1

2

∂h

∂t
I

]
u ⟩ = 0

which implies that the operator

A+ 1
2

∂h

∂t
I

must be skew-symmetric. To accomplish this, the tensor A may be expressed as

A = 1
2
C − 1

2
CT − 1

2

∂h

∂t
I (2.13)

or, alternatively,
A = 1

2
C − 1

2
CT + 1

2
(∇ · q) I (2.14)

so that C is a skew-symmetric tensor. (An arbitrary tensor C can be written as the sum of
two parts, one symmetric, the other skew-symmetric: C = 1

2
(C +CT) + 1

2
(C −CT). If C is

skew-symmetric, then the symmetric part is identically zero.)
We conclude this section by pointing out that an envisaged semi-discretization method

should also possess a Hamiltonian structure not only to ensure its computational stability but
also to respect the conservative cascade of energy from large to small scales through nonlinear
interactions. This is particularly significant for describing nonlinear wave transformation
in coastal regions. In this respect, some terms in the shallow water equations should also
be individually energy conserving, namely, the pressure gradient term and the advection
terms.

Conservation of energy by the pressure gradient term requires skew symmetry of the
associated operator. More specifically, a discrete analogue of Eq. (2.8) is needed regarding
the pressure gradient ∇gζ and the divergence of mass flux ∇ · q. In Section 2.5, we will
show how this desired mimetic property can be constructed by using the techniques from
algebraic topology.

Additionally, skew symmetry should also be taken into account when discretizing the
divergence term ∇ · (q⊗ u) in the momentum equation (2.2), as indicated by Eq. (2.13).
This also prevents the accumulation of aliasing errors. However, to include the shock
formation as manifested in hydraulic jumps and tidal bores, some form of energy dissipation
must be added. We will return to this matter in Chapter 3.

2.4 Differential forms and the Stokes’ theorem

2.4.1 Introduction

The purpose of this section is to present a brief introduction to some of the main concepts
of differential geometry and to demonstrate their utility for the development of a numerical
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method for the solution of the shallow water equations on orthogonal meshes. These include
the differential forms, the exterior derivative and the generalized Stokes’ theorem [8, 23, 62].
Their discrete counterparts will be elucidated in detail in Section 2.5 which form the starting
point for the mimetic discretizations of Chapter 3, 4 and 5.

2.4.2 Differential forms

The equations presented in the previous sections are expressed in terms of vector calculus.
The fundamental attributes are the scalar and vector fields. A field variable is a local
function that describe the variable at each point in space (and at each instant in time, but
we will not consider that here; see, e.g. [92]). This is also called a density and is essentially
the result of a limit process. For example, mass density, denoted as ρ(x, t), is the result of
the ratio of an infinitesimally small mass δm to an infinitesimally small volume δV while
taking the limit δV → 0. Obviously, such a scalar field does not make sense physically,
since a zero volume would contain no mass. It is a pure mathematical concept resulted
from the process of limit.

By contrast, differential forms are defined informally as physical variables that are
associated with a geometrically finite object, such as a curve, plane or volume. For example,
we can express mass as

m =

∫
V

ρ dV

which has a clear physical meaning irrespective of the size and shape of volume V . So, here
mass is defined as a volume integral and the quantity ρ dV is called a differential form.

Another example is the mass flux density which is defined as

lim
δS→0

ṁ

δS

with ṁ = dm/dt the mass flow rate and δS the infinitesimal area through which the mass
flows. This mathematically well-defined quantity is by itself physically meaningless: it only
provides a local measure of the mass current per unit cross area emanating from a point in
space.

Another view is that the mass flux density is a vector field, denoted q = ρu where u is
the flow velocity vector, and the integral of this flux over a cross section S yields the total
amount of mass passing through the cross section in a unit of time. The surface integral is
expressed as ∫

S

q · dS

where dS is the surface element pointing outward normal to the surface. Here, q · dS
represents the mass flux and is physically defined for any size and shape of section S. This
physical quantity is another example of a differential form. Note, however, that by Gauss’
divergence theorem in vector calculus, one has∫

V

∇ · q dV =

∮
∂V

q · dS
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which provides a geometric interpretation of the divergence operator ∇· in the sense that
integrating this operator over a finite volume yields the total flux through the volume
boundaries.

Quantity ρu can also be interpreted as the mass circulation density and is identified
with the curl of ρu at a single point: ∇× ρu. Indeed, by Stokes’ curl theorem, if A is a
finite surface in R2 and dl is a curve element locally tangent to the boundary of A, then
the total circulation of the vector ρu around the perimeter of A is computed as∮

∂A

ρu · dl =
∫
A

(∇× ρu) · dA

Thus, mass circulation is symbolized by the differential form ρu · dl integrated on a finite
line segment.

There are also, however, quantities that can be sampled at single locations, such as
surface elevation, bed level and dynamic pressure. These are differential forms associated to
a spatial point. Such forms commonly manifest themselves as the argument of the gradient
operator ∇. This is clarified by the fundamental theorem of calculus for line integrals. Let
π : R2 → R be a differentiable function given on a continuous curve ℓ ⊂ R2 that starts at
point p and ends at point q. Then the integral of the gradient of π over the curve ℓ is equal
to the total change in π between the two endpoints of ℓ, that is,∫

ℓ

∇π · dl = π(q)− π(p)

Differential forms are characterized by the dimension of the underlying geometric objects.
A differential k−form integrates over a k−dimensional smooth (infinitely differentiable)
manifold embedded in a n−dimensional space (k = 0, 1, . . . , n), and takes this to R. For
instance, in R3 there are four types of differential forms, that is, 0−, 1−, 2− and 3−forms,
associated with points, curves, planes and volumes, respectively. It is important to note
that unlike scalar and vector fields, differential forms are independent of coordinate systems
and metric (e.g. length, area, angle).

In what follows, forms are denoted by lower case Greek letters with the superscript
indicating the dimension. Hence, with reference to the first example above, µ(3) = ρ dV is
a 3−form which is a scalar. In the case of the flow velocity vector, there are two distinct
differential forms, namely, the 2−form ϕ(2) = q · dS, that is, the normal to a plane, and
the 1−form γ(1) = ρu · dl, which is the vector tangent to a curve. And in the last example,
function π is a 0−form, π(0) = π, which trivially gives a scalar.

2.4.3 Generalized Stokes’ theorem

The calculus of differential forms is based on the exterior derivative and the generalized
Stokes’ theorem which extend the notion of differentation and integration, respectively, to
arbitrary dimensions. Let d denotes the exterior derivative and let α(k) be a k−form defined
on some manifold M of dimension k. The exterior derivative of α(k) is a (k + 1)−form
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that is written as dα(k), for k = 0, 1, . . . , n− 1. Indeed, the action of exterior derivative on
differential forms provides us a coordinate invariant way to calculate the gradient, curl and
divergence operators of vector calculus. For example, dα(0) is the same as the gradient of
a scalar and the result is a 1−form, which represents a tangential component of a vector.
Likewise, dα(1) and dα(2) are equivalent to the curl of a vector (tangent to a curve) and
the divergence of a vector (normal to a plane), respectively. The result of the former is a
2−form, which is actually the normal component of a vector, while the result of the latter
is scalar, a 3−form.

As we have seen in the above examples, the gradient, curl and divergence operators can
be linked to the corresponding geometric objects (curve, plane and volume, respectively)
with lower-dimensional boundaries (points, curves and planes, respectively) by means of
the corresponding integral theorems (the fundamental theorem of calculus for line integrals,
the Stokes’ curl theorem and the Gauss’ divergence theorem, respectively). In the same
vein, the exterior derivative can be connected to a (k + 1)−dimensional manifold M with
k−dimensional boundary ∂M through the generalized Stokes’ theorem, which is stated in
the following very elegant and simple formula∫

M
dα(k) =

∫
∂M

α(k)

for a given k−form α(k). This theorem equates the integral of the exterior derivative of
a form on a manifold to the integral of this form on the boundary of the manifold. We
observe that the three key theorems of vector calculus as outlined above are all special
cases of the generalized Stokes’ theorem.

Differential forms are the essential building blocks in the study of differential geometry
[62]. This mathematical language allows one to express differential forms on smooth and
curved manifolds in a consistent manner, not dependent on a coordinate system. But most
relevant to our discussion is that the use of differential forms is motivated by the physical
fact that the measurements of physical quantities, e.g. mass, mass circulation, mass flux,
pressure, are typically linked to integration over geometrically finite manifolds. As such,
differential forms naturally lend themselves to a discrete representation. In particular,
different global variables can be represented as coordinate-free discrete differential forms
integrated on different mesh elements (vertices, edges, faces and cells). This is the approach
that we will use in the discrete setting.

Consider a three-dimensional computational mesh which consists of vertices, edges, faces
and volumes. Let a vertex, an edge, a face and a cell be denoted by σ(k) with k = 0, 1, 2, 3,
respectively. A discrete k−form is defined as the integral of a k−form over a k-dimensional
mesh element σ(k), symbolized by ∫

σ(k)

α(k)

and yields a single real number associated with σ(k). Note that the discrete form is the whole
integral quantity, not the integrand as with differential forms. In this way, we distinguish
between 0-forms represented by their values at a set of vertices, 1-forms by their line
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integrals over a set of edges, 2-forms by their surface integrals over a set of faces, and
3-forms by their volume integrals over a set of cells. We use from now on Greek letters for
discrete forms, that is, π(0) for the pressure at a vertex, γ(1) for the mass circulation along
a mesh edge, ϕ(2) for the mass flux through a mesh face, µ(3) for the mass in a cell, etc.

It is also apparent that the discrete forms serve as the degrees of freedom for our
numerical framework, rather than grid point values as used in finite difference methods
or cell averages in finite volume methods. Since these forms are topological, that is,
independent of metric, the intended numerical method can easily be extended to any type of
computational meshes embedded in two-dimensional Euclidean spaces, including rectilinear
meshes (Chapter 3), curvilinear meshes (Chapter 4) and triangular meshes (Chapter 5).

The generalized Stokes’ theorem reveals that differential forms and integral theorems
are intimately connected. More specifically, the integration of a differential form, or the
discrete form for that matter, can be used to establish any of the differential operators
such as gradient, curl or divergence. This is illustrated by Figure 2.1 that shows the three
fundamental theorems with which the integral of the corresponding differential operator

Figure 2.1: The evaluation of the gradient operator along a line segment by means of the
discrete 0−forms at the two endpoints as per the fundamental theorem of calculus for
line integrals (left), the curl operator in a triangle by summing the discrete 1−forms over
the triangle edges using the Stokes’ curl theorem (center), and the computation of the
divergence in a cube is the same as taking the sum of the discrete 2−forms on the six faces
according to the Gauss’ divergence theorem (right). The displayed arrows indicate the
orientation of the geometric object; see Section 2.5.2 for further discussion.

over a finite geometric object is computed by a direct evaluation of the associated discrete
form over the boundary of that object. This observation is the central theme for the
mimetic discretizations used in this work. In Section 2.5, we will apply the Stokes’ theorem
to construct a discrete counterpart of the exterior derivative, with which the continuous
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differential operators, grad, curl and div can then be mimicked at the discrete level.

2.4.4 Vector-valued differential forms

In this section we briefly discuss another type of differential form that will not be applied in
our discretization process, but utilized as part of the rationale for our choice of associating
flow variables with appropriate geometric (mesh) objects. We will come back to this in
Section 2.4.5.

With differential k−forms integrals of scalar and vector fields over a finite k−dimensional
element can be described. Since scalars have no direction and vectors have a single direction,
the corresponding differential forms are therefore viewed as a linear map from scalars
or vectors to real numbers. Therefore, such differential forms are called a scalar-valued
differential form and examples of these include pressure (0−form), flow velocity (1−form),
mass flux (2−form), and mass (3−form).

There are also physical quantities where we need more than one direction to describe
their properties. Such quantities typically relate a vector to another vector and are known
as tensors. For example, a stress tensor describes fluid deformation normal to a plane but
also tangential to the same plane, and is thus a second order tensor with n2 entries (4 in
R2 and 9 in R3). In the same way as with scalars and vectors, we can also associate tensors
with geometric objects, and they are classified as vector-valued differential forms1.

To clarify things, we use the conservation of momentum as an example. This fundamental
law is expressed by the following Navier-Stokes equation in integral form

∂

∂t

∫
V

m dV +

∮
∂V

(u⊗m− τ ) · dS =

∫
V

f dV

where m = ρu is the momentum density of the fluid, u is is the flow velocity, τ is the
(Cauchy) stress tensor and f represents body forces acting on the fluid. For Newtonian
fluids, the stress tensor reads

τ = −pI + µ
(
∇u+ (∇u)T

)
with µ = ρν the dynamic viscosity.

Now, it is true that convective acceleration, pressure force and viscous stresses in one
direction can affect the momentum in another direction. The reason is that momentum
density is a vector quantity having both a magnitude and a direction. Yet, not only the
amount of momentum is conserved within a control volume, but also in all three spatial
directions − x, y and z − at the same time, viz.∫

V

m dV

Here, quantity m dV is consistently defined for any volume V and is termed a covector-
valued 3−form, that is, it is represented by a scalar-valued 3−form in each physical direction.

1In the literature, they are also referred to as bundle-valued or covector-valued differential forms.
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In the same way, the stress vector τ · dS is called a covector-valued 2−form (or, generally,
(n− 1)−form) where each component is associated with plane dS with either a normal or a
tangential direction. Finally, the convective part of the momentum flux and the body force
term are examples of a covector-valued 2−form and a covector-valued 3−form, respectively.

The use of vector-valued differential forms is particularly relevant for the discretization on
non-Cartesian meshes. For example, assembling a momentum balance for each component of
the momentum density would be rather complicated when the coordinate bases change from
point to point so that the momentum flux and stress tensor vary locally both in magnitude
and in direction. This requires knowledge on how the covariant (and contravariant)
base vectors change spatially which is commonly encoded in the covariant derivative and
Christoffel symbols known from tensor calculus [4]. In contrast to scalar-valued differential
forms, the mathematical theory of vector-valued differential forms is rather laborious −
this concept is defined without reference to a metric − and has not received great attention
so far in the CFD community. More discussion on this topic is provided in [46].

2.4.5 Revisiting shallow water equations

The present section concludes with a discussion on the associations of the variables in
the shallow water equations with suitable geometric elements (points, lines, surfaces, and
volumes). These associations are guided by the physical interpretation of the variables. The
outline in this section is largely intuitive but will serve as a starting point for a mathematical
exposition of the mimetic framework in the sequel of this chapter.

We revisit the inviscid shallow water equations (2.1)−(2.2) or (2.4) while examining
each variable in the respective equations individually in the following. Recall the continuity
equation. It is given by

∂h

∂t
+∇ · q = 0

The first variable is the water depth h that acts like a volume and so it is treated as a
3−form. Thereafter, the mass flux q is associated with a surface and hence viewed as a
2−form. It should be noted that taking the divergence of a 2−form results in a 3−form.
Thus, the continuity equation contains only 3−forms so that the contributions in the
equation are mutually consistent.

Next, we continue with the momentum equation which reads

∂u

∂t
+ (u · ∇) u = −g∇ζ

We note here that we are not considering Eq. (2.2) but rather the equation above. We
come back to this point later. The first two terms represent accelerations (temporal and
advective, respectively) and are in the same direction as the pressure gradient (Newton’s
second law). This direction is tangent to the flow line. Consequently, the advection term
(u · ∇)u acts only with one component along this line. This term is thus described as a
scalar-valued 1−form. Furthermore, the velocity u in the unsteady term measures the fluid
flowing along the streamline and is identified as the velocity circulation. (Remember that
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the projection of u onto a line segment dl, that is u · dl, contributes to circulation.) Clearly,
this is characterized as a 1−form as well. Finally, the water level ζ is sampled at a given
location and hence associated with a point. Therefore, it is seen as a 0−form. Since the
gradient of a 0−form produces a 1−form, the present equation of motion invariably involves
1−forms only. In this view, Eq. (2.4) will be referred to as the flow equation.

By connecting physical variables to geometric objects more unknowns have been obtained,
thus making the system indeterminate. Here, we have four differential forms, symbolically
given as h, q, u and ζ, and two governing equations, implying that two additional relations
are required to close the system. In the next section we will see that these so-called
constitutive relations are metric dependent and thus approximate in nature. Yet, the
distinct use of the differential forms and the constitutive relations allows an elegant way to
develop discretizations in a transparent manner by separating the process of approximation
from exact discretization. This will be discussed in greater detail in Section 2.6.

As pointed out earlier in this section, the non-conservation form of Eq. (2.4) is utilized
to reveal the association between the flow variables and geometry. Let us now turn to the
momentum equation (2.2). The divergence term ∇ · (q⊗ u) contains the tensor product
between two vectors, viz. ⊗. This implies that Eq. (2.2) is a tensor equation and thus
requires the use of vector-valued differential forms like the Navier-Stokes equations (see the
previous section).

Yet, in the context of incompressible shallow water flows, it is assumed that the flow
moves gradually downstream as time evolves by which the momentum flux tensor q⊗ u
redirects the depth-integrated velocity hu towards the direction of the pressure force, with
little or no influence from the traversed velocity components. This allows us to stick to
Eq. (2.4) while dealing with (vector) differential operators only, such as grad and div,
as we did previously. Nevertheless, to handle cases with bores and hydraulic jumps, we
will henceforth consider Eq. (2.2) where all terms are integrated along a streamline, thus
treating them as scalar-valued 1−forms. This means that Eq. (2.2) is interpreted as a flow
equation rather than a momentum equation. Note that the time derivative ∂hu/∂t and the
pressure gradient term gh∇ζ are clearly represented by a 1−form since the multiplication
of a vector or a gradient (1−form) by a scalar (0−form) is still a vector (1−form).

Another complication concerns the mimetic discretization of momentum advection. In
the language of differential forms the treatment of advection is usually by means of the
so-called Lie derivative. It expresses the advective transport of a differential form caused by
the action of a vector field. Yet, the discretization of the Lie derivative within the mimetic
framework is less straightforward. Nevertheless, in their paper [27] the authors showed
how for a number of relatively simple cases (e.g. flat domains, regular triangular meshes)
there are similarities between the DEC discretizations of the Lie advection of a differential
form and the traditional central and upwind schemes within the finite difference and finite
volume methods. We will not go into this further, but the interested reader is referred to
[22, 60, 46] and [27] for a detailed discussion.

In this work we will use a different approach, proposed by Perot [70] who first developed
a staggered mesh discretization of the Navier-Stokes equations in divergence form for
unstructured triangular meshes. Accordingly, we will develop a similar discretization for
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the term ∇ · (q⊗ u) separately while adhering to the principles of mimetic discretizations
as much as possible. In this regard, this discretization obeys the Rankine-Hugoniot jump
relations and thus ensures the correct handling of discontinuities and shocks. A detailed
treatment of this approach is described in Chapter 5.

2.5 Basic concepts of algebraic topology

2.5.1 Introduction

This section concerns with some of the essential definitions and tools of algebraic topology
for two-dimensional manifolds. They establish a formalization of the notion of discretization
of physical space in which physical laws are embedded. This formalism lay the foundation
for the numerical framework of SWASH in the next sections.

Algebraic topology is a branch of mathematics that essentially deals with the study of a
manifold (a geometric object) which is encoded by means of the (graph) connectivity. In turn,
algebra and discrete boundary relations determined by this connectivity are employed to find
topological invariants and symmetries of the manifold implied by differential geometry. As
we will see later on, it defines a clean separation between the process of exact discretization
of physical conservation properties and the process of approximation of constitutive relations
that should be implemented anyway. Original ideas about this approach were proposed two
decades ago by [53, 82, 54, 92].

A good introduction to algebraic topology is provided by [61]. Somewhat more abstract
is the book of [30]. Another good one on this topic is the (subject to change) lecture notes
of [20].

2.5.2 Cell complex and orientation

A manifold is a topological space living in n−dimensional Euclidean space Rn that is
equipped with a topological structure to allow defining mappings of (sub)manifolds, but not
measured by a metric. Such a structure refers to the essential relationships that describe
the connectivity between geometric objects and the integral relations that underlie certain
invariant and symmetry properties.

A finite dimensional manifold that we will consider here is a computational mesh. It
provides a means of partitioning a computational domain Ω ⊂ Rn into a collection of
distinct geometric objects (or submanifolds) called k−cells with k = 0, 1, . . . , n indicating
their spatial dimension. The associated mesh is thus discretely represented by a finite
collection of vertices (0−cells), edges (1−cells), faces (2−cells) and cells (3−cells).

A k−cell is denoted by σ(k) and its size or (intrinsic) volume is denoted |σ(k)|. We
define |σ(0)| = 1. The collection of k−cells is a subset of Rn, denoted Mk, and is called a
k−dimensional manifold. This manifold is assumed to have a boundary. The boundary of
a k−cell, denoted ∂σ(k), is made up of (k − 1)−cells that are directly connected to. These
lower dimensional cells are elements of Mk−1 (k = 1, . . . , n) and are referred to as the faces
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of the k−cell. Note that the boundary of a 0−cell is empty. The set {M0, . . . ,Mn} is
called the mesh.

A cell complex K on Ω is a finite set of k−cells, with k = 0, 1, . . . , n, such that (i) the
n−cells cover Ω, (ii) each face of a k−cell of K is in K, and (iii) the intersection of any two
k−cells of K is either a face of each of them or is empty. We simply write the cell complex
as K = {M0, . . . ,Mn}, which is a mesh. Note that the converse is not necessarily true (see
below). Figure 2.2 illustrates an example of a cell complex in a two-dimensional domain.

Figure 2.2: Example of a two-dimensional cell complex with labeled 0−cells (vertices),
1−cells (edges) and 2−cells (faces). The 2−cells, i.e. computational cells, are a mixed of
triangles and rectangles.

Manifolds are also endowed with an orientation which is a key element for identifying
the conservation properties in the construction of mimetic discretizations. Two types of
orientation can be distinguished for a manifold Mk: inner and outer orientation. The
first type defines the orientation in the geometric object, while the second designates the
orientation outside the geometric object embedded in space Rn.

Every k−cell is oriented and has exactly two directions. In this work, we choose a
positive orientation according to the right-hand rule. Consequently, the other is negative.
In particular, an inner-oriented 0−cell is positively oriented as a sink (into the vertex), an
inner-oriented 1−cell is oriented by a direction, pointing to the right, along the edge, an
inner-oriented 2−cell by a sense of rotation, in the counterclockwise direction, on its face
and an inner-oriented 3−cell by a right-handed screw inside its cell. Additionally, the inner
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orientation on ∂σ(k) is induced by σ(k). It is important to note that the inner orientation
on a k−cell is identical for each such cell embedded in an n−dimensional space.

Outer orientation, on the other hand, depends on the dimension of the embedding
space. The outer orientation specifies, for instance, a transverse direction through a vertex
embedded in R1, across an edge in R2 and through a face for a 3D embedding space.
Here, a positive orientation is the one implied by the orientation of the embedded space
that is equipped with a right-handed coordinate system in Rn. Another example is a
counterclockwise rotation around a vertex or an edge embedded in R2 and R3, respectively.
Finally, the outer orientation of an n−cell in Rn is induced by the outer orientation of its
faces with outward normals. Thus, the same geometric object has different types of outer
orientation depending on the dimension of embedding space Rn.

The concept of inner and outer orientation gives rise to a pair of meshes embedded in
Rn, each endowed with a different type of orientation. Moreover, they are topologically dual
to each other in the sense that an inner-oriented k−cell corresponds to an outer-oriented
(n− k)−cell, and vice versa. The former is referred to as the primal mesh, denoted K, the
latter is called the dual mesh, denoted K̃. We will use the tilde throughout this chapter
to indicate a dual object. Here, K is inner oriented while K̃ is outer oriented, but this
is merely a choice and either choice is equally fine. What is important is that all of the
k−cells in one particular mesh must have the same type of orientation (i.e. inner or outer).
Figure 2.3 depicts a graphical representation of the orientation of the various primal and
dual cells in a 2D space.

The computational mesh is an oriented cell complex K that covers the domain Ω. This
mesh is designated as the primal mesh. We denote by K̃ its associated dual mesh. However,
not all faces of the (n− k)−cells in K̃ (for k = 1, . . . , n) are contained in K̃. Nevertheless,
as we will see later, the dual mesh is not required to be a cell complex in our discretization
method. Also, it does not need to be created or stored explicitly − only its metric will be
computed. This will be elaborated in detail in Section 2.5.7.

2.5.3 The computational mesh and its dual

The topology of the computational mesh is routinely described by means of simplices
(e.g. triangles, tetrahedrons) or cuboids (e.g. quadrilaterals, hexahedrons). One should
note, however, that both descriptions, though topologically equivalent, are geometrically
different; see Section 2.5.7. The present work is entirely devoted to polygonal meshes in
(x, y) ∈ Ω ⊂ R2 even though the space dimension n is kept general in the present exposition.
Here, mesh edges are straight lines and mesh faces are planar. Note that, although there is
no difference between the edge and the face of a 2D mesh, their distinction will nevertheless
clarify the derivations to be presented.

A polygonal mesh consists of a finite number of polygons. A polygon is said to be cyclic
if it can be inscribed in a circle, that is, if there exists a circle so that every vertex of the
polygon lies on the circle. This circle is called the circumcircle. For example, all triangles
and all rectangles are cyclic. The center of the circumcircle is known as the circumcenter
and can be found as the intersection of the perpendicular bisectors of the edges of the
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(a) k−cells with inner orientation.

(b) (2− k)−cells with outer orientation.

Figure 2.3: Oriented primal cells (a) and dual cells (b) embedded in R2.

polygon.
A polygon is well centered if its circumcenter is contained in its interior. A well-centered

computational mesh has all of its polygonal cells that are well centered. For example,
an acute triangulation is well centered. The mesh constructed by joining the primal cell
circumcenters is called the circumcentric dual mesh. Any well-centered primal mesh and
its dual are mutually orthogonal. A classic example is the Delaunay triangulation (primal
mesh) and the associated Voronoi tessellation (dual mesh).

Discretizations such as the finite volume and finite element methods benefit from well-
centered polygonal meshes because they display desirable conservation and symmetry
properties. This is the central theme of this chapter.

Rectangular and curvilinear (cyclic quadrilateral) meshes are always well centered. This
is not necessarily true for triangular cells. In particular, the circumcenter of a right-angled
triangle lies at the midpoint of the hypotenuse and the circumcenter of an obtuse triangle
lies outside the triangle. Nonetheless, one can proof that for every planar polygon there
exists a well-centered (nonobtuse) triangulation [5].

An alternative would be the use of the barycentric dual mesh. This mesh is formed by
connecting the cell centroids and the edge midpoints. The barycentric dual mesh greatly
facilitates flexibility in mesh generation and also in adaptive mesh refinement. However,
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the lack of orthogonality between the primal edges and their barycentric duals generally
increases the complexity of the discretization [33, 55, 56, 57] and may additionally affect
the numerical stability.

As will be demonstrated in Section 2.5.7, the circumcentric dual mesh is the preferred
one as it allows for computationally tractable and stable discretizations. For the present
SWASH applications, only orthogonal rectangular grids (Chapter 3), orthogonal curvilinear
grids (Chapter 4) and Delaunay triangular meshes (Chapter 5) are considered.

2.5.4 Chains and boundary operator

Let Ck(K) be a group generated by a basis consisting of all the k−cells of cell complex K.
An element of Ck(K) is called a k−chain and is a linear combination of oriented k−cells,

c(k) =
∑
i

ci σ(k),i

where σ(k),i is the ith k−cell in Mk and ci ∈ {−1, 0, 1} is the ith component of c(k). The
k−cells form the canonical basis for the vector space of k−chains. The dimension of Ck(K)
equals the number of elements of Mk and is written as |Ck|. A k−chain c(k) is represented
as a row vector of length |Ck|. Furthermore, integer component ci of c(k) refers to the
orientation of the cell in the chain with respect to its default orientation in cell complex K
(positive if they agree or negative if they disagree) or to the cell not being a part of the
chain, that is, ci = 0. Note that a k−cell is also named as an elementary k−chain.

Just like the boundary of a k−cell is an element of Mk−1, so is the boundary of a
k−chain, denoted ∂c(k), an element of Ck−1(K). In this regard, we define the boundary
operator as a linear operator ∂k : Ck(K) → Ck−1(K) which returns a (k − 1)−chain after
applying to the k−chain,

∂kc(k) = ∂k
∑
i

ci σ(k),i :=
∑
i

ci ∂kσ(k),i

with ∂kσ(k),i the boundary of σ(k),i which is a (k−1)−cell formed by the faces of the oriented
k−cell, as follows

∂kσ(k),i =
∑
j

oi,j σ(k−1),j (2.15)

where oi,j equals +1 if σ(k−1),j ∈ Mk−1 and the orientations of σ(k−1),j and σ(k),i agree, −1
if these orientations disagree, or 0 if σ(k−1),j is not a face of σ(k),i. Hence,

∂kc(k) =
∑
i

∑
j

ci oi,j σ(k−1),j (2.16)

The boundary operator has the important property that the boundary of a boundary is
empty, so that using the boundary operator twice to any k−chain gives a null value, that
is, ∂k−1∂kc(k) = 0 , ∀c(k) ∈ Ck(K). The boundary operator is called nilpotent.
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Given a basis for the vector spaces Ck(K) and Ck−1(K), the boundary operator is
represented as an incidence matrix Dk of size |Ck| × |Ck−1|. Each row corresponds to each
element of Ck(K) and each column to each element of Ck−1(K). Owing to Eq. (2.15), the
entries of the matrix are given by

[Dk]i,j = oi,j , k = 1, . . . , n (2.17)

An entry is −1 or +1 (the sign depending on the orientation) if an element of Ck−1(K) is
incident with an element of Ck(K), or 0 if they are not related. Thus the action of boundary
operator ∂k on a chain c(k) amounts to the matrix-vector multiplication c(k)Dk, which is a
row vector of length |Ck−1|. We note that c(k) Dk Dk−1 = 0T , ∀c(k) ∈ C(k)(K) , k = 2, . . . , n.

2.5.5 Cochains and coboundary operator

The vector space of chains Ck(K) of cell complex K coexists with a dual vector space of
linear functions γ(k) : Ck(K) → R. This dual space is denoted by Ck(K) and its elements
are called k−cochains. Let c(k) be the k−chain of K and γ(k) the k−cochain of K. We
write

⟨c(k), γ(k)⟩ := γ(k) (c(k) ) ∈ R

for the value of γ(k) on c(k). This linear mapping is called the duality pairing of k−cochain
with k−chain. As it will be clear shortly, the notion of duality pairing between cochains
and chains plays a centrol role in the discretization process.

Given a basis of Ck(K), {σ(k),i | i = 1, . . . , |Ck|}, there is a dual basis of Ck(K),
{σ(k),i | i = 1, . . . , |Ck|}, such that

⟨σ(k),j, σ
(k),i⟩ = δij

so that the ith elementary k−cochain is associated with the ith k−cell only. By linearity, a
k−cochain γ(k) ∈ Ck(K) can be expressed as

γ(k) =
∑
i

γiσ
(k),i

and is represented as a column vector with its components γi ∈ R. The length of this vector
is |Ck|. Duality pairing of a k−cochain γ(k) with a k−chain c(k) can now be calculated as

⟨c(k), γ(k)⟩ =
∑
i

∑
j

cjγi⟨σ(k),j, σ
(k),i⟩ =

∑
i

∑
j

cjγiδ
i
j =

∑
i

ciγi = c(k) γ
(k)

This duality pairing is a metric-free operation. (This is not the inner product of Section 2.3
because c(k) and γ(k) are not defined in one single vector space.)

A k−cochain acts as a function that associates to every k−chain of K a discrete real
number that is independent of any coordinate system. In particular, the value

⟨σ(k),i, γ
(k)⟩ = γi
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is a coordinate-free scalar evaluated on the ith k−cell. This function evaluation is interpreted
as the geometric integration of γ(k) over the k−cell of cell complex K. The integral of γ(k)

over an inner-oriented k−cell is symbolized by∫
σ(k)

γ(k) := ⟨σ(k), γ
(k)⟩

and is referred to as an inner-oriented k−form, or inner k−form for short. By linearity, the
integral of γ(k) over a k−chain can be calculated as∫

c(k)

γ(k) =
∑
i

ci
∫
σ(k),i

γ(k) =
∑
i

ci⟨σ(k),i, γ
(k)⟩ =

∑
i

ciγi = ⟨c(k), γ(k)⟩

Let c(k+1) be a (k + 1)−chain of cell complex K, then its boundary ∂k+1c(k+1) is a
k−chain. Here, the orientation on ∂k+1c(k+1) is induced by c(k+1). The adjoint of this
boundary operator with respect to the duality pairing ⟨·, ·⟩ is called the coboundary
operator δk and is defined by

⟨c(k+1), δ
kγ(k)⟩ = ⟨∂k+1c(k+1), γ

(k)⟩ , ∀c(k+1) ∈ Ck+1(K) , ∀γ(k) ∈ Ck(K)

The coboundary operator δk : Ck(K) → Ck+1(K) is a linear operator that relates a
k−cochain to a (k + 1)−cochain. The above adjoint relation can also be written in the
following integral form ∫

c(k+1)

δkγ(k) =

∫
∂k+1c(k+1)

γ(k)

which can be viewed as the discrete counterpart of the generalized Stokes’ theorem. The
operator δk is also called the kth discrete exterior derivative. Recall that the three theorems
of vector calculus, namely, the fundamental theorem of calculus for line integrals, the
Stokes’ curl theorem and the Gauss’s divergence theorem (cf. Figure 2.1) are a special case
of the generalized Stokes’ theorem applied to oriented 0−forms, 1−forms and 2−forms,
respectively, in R3. This observation is key in constructing the mimetic discretization of
continuous differential operators grad, curl and div.

The operator δk can be expressed as an incidence matrix Dk of size |Ck+1| × |Ck| so that
the action of Dk on a cochain γ(k) is the matrix-vector multiplication Dkγ(k). Matrix Dk is
the adjoint of matrix Dk+1, which can be demonstrated by the above theorem, namely,

c(k+1)Dkγ(k) = c(k+1)Dk+1γ
(k)

which implies Dk = Dk+1 for k = 0, . . . , n− 1.
By virtue of the duality pairing between the boundary operator and coboundary operator,

the discrete exterior derivative is a metric independent operator, which additionally has the
property that

Dk+1 Dk = 0T , ∀k = 0, . . . , n− 2

reflecting the nilpotency of the coboundary operator, that is, δ(k+1) δ(k) = 0.
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Let us choose an inner orientation for cell complex K in R2. Then the discrete exterior
derivative represents an exact discretization of grad if k = 0 and curl if k = 1 such that
the Stokes’ theorem holds for the associated inner-oriented k−cells (cf. left and center
panels of Figure 2.1, respectively). In addition, we have that D1D0 = 0T, which implies
curl grad = 0 (the curl of a gradient is zero). Exact representation of this vector calculus
identity is crucial for a physics-compatible and stable numerical scheme.

2.5.6 The dual mesh: discrete k−forms and exterior derivative

The notions of chains, the boundary operator, discrete forms and the discrete exterior
derivative can also be applied on the dual mesh. Let K be a primal mesh (or cell complex)
and K̃ the associated dual mesh on Ω ⊂ R2. Remember that the dual mesh is not a cell
complex, but we omit this feature here for simplicity as it does not change the exposition
in the following.

There exists a bijective map between the dual mesh elements and the primal ones,
namely, each (n− k)−cell of the dual mesh is dual to a primal k−cell, for k = 0, . . . , n. We
denote the dual of k−cell by σ̃(n−k) and the map by ⋆, that is, ⋆σ(k) = σ̃(n−k). The set of

dual cells is denoted by M̃n−k. The dual mesh is then given by K̃ = {M̃n, . . . ,M̃0}. In
line with the choice of primal mesh K in Section 2.5.2, K̃ is outer oriented. Recall that the
outer orientation of a dual cell depends on the dimension of the embedded space Rn.

We denote the vector space of dual k−chains by Cn−k(K̃) and its canonical basis
by {σ̃(n−k),i | i = 1, . . . , |Ck|}. Similarly, we have the space of dual k−cochains, denoted

Cn−k(K̃), generated by its dual basis {σ̃(n−k),i | i = 1, . . . , |Ck|}. The elements of Cn−k(K̃)
are the dual discrete forms by which an outer (n− k)−form is dual to an inner k−form.

The boundary of an outer-oriented cell σ̃(n−k+1) of the dual mesh, with k = 1, . . . , n,
constitutes a number of connected faces σ̃(n−k), for which not all of them are in the mesh.

By duality, we have the dual boundary operator ∂̃n−k+1 : Cn−k+1(K̃) → Cn−k(K̃) obtained
as follows

∂̃n−k+1σ̃(n−k+1),i =
∑
j

õi,j σ̃(n−k),j , i = 1, . . . , |Ck−1| , j = 1, . . . , |Ck|

with õi,j indicating the outer orientation of σ̃(n−k) induced by σ̃(n−k+1) (+1 if they agree,
−1 if they disagree, and 0 otherwise). This orientation coefficient is related to that on the
primal mesh, viz. Eq. (2.15), according to

õi,j = (−1)k oj,i , ∀k = 1, . . . , n (2.18)

Here the sign coefficient follows from Figure 2.3. In particular, the orientation of the
inner-oriented 0−cell is the opposite of the orientation of the outer-oriented 2−cell while
those of the 1−cells have the same orientation.

The coefficients õi,j constitute an incidence matrix D̃n−k+1 of size |Ck−1| × |Ck| that
represents the dual boundary operator ∂̃n−k+1. Eq. (2.18) is used to establish the relationship
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between the primal and dual boundary operators as follows

D̃n−k+1 = (−1)k (Dk)
T , k = 1, . . . , n

Clearly, on the dual mesh we also have D̃k D̃k−1 = 0 , ∀k = 2, . . . , n.
A dual coboundary operator can be defined analogously. The dual coboundary operator

δ̃n−k−1 : Cn−k−1(K̃) → Cn−k(K̃) is the adjoint of the dual boundary operator ∂̃n−k based
on the generalized Stokes’ theorem

⟨c̃(n−k), δ̃
n−k−1γ̃(n−k−1)⟩ = ⟨∂̃n−kc̃(n−k), γ̃

(n−k−1)⟩

for all c̃(n−k) ∈ Cn−k(K̃) and γ̃(n−k−1) ∈ Cn−k−1(K̃). Note that, by virtue of the duality
pairing, the dual cochain γ̃(n−k−1) is an outer form that is integrated over the outer-oriented
boundary of c̃(n−k). The dual coboundary operator is represented by a |Ck| × |Ck+1| matrix

D̃n−k−1 and is given by

D̃n−k−1 = (−1)k+1
(
Dk
)T

, k = 0, . . . , n− 1

since D̃n−k−1 = D̃n−k (and Dk = Dk+1) as per the Stokes’ theorem. Additionally, we have
D̃k+1 D̃k = 0 , ∀k = 0, . . . , n− 2.

By virtue of the Stokes’ theorem, the discrete exterior derivative defined on the dual
mesh is the same as the dual coboundary operator. The operator D̃n−k−1 turns an integral
over a dual k−cell into a boundary integral, that is, over the boundary of the dual k−cell,
and maps a discrete outer (n − k − 1)−form to a discrete outer (n − k)−form. For
example, D̃n−1 acting on the outer (n − 1)−form, that is, the flux through a mesh face,
yields an outer n−form (volume form). This is exactly the application of the divergence
theorem and operator D̃n−1 is thus identified with the operator div (cf. right panel of
Figure 2.1). Furthermore, we observe that D̃n−1 = −(D0)T which is the discrete version of
the antisymmetry relation div = −gradT. As demonstrated in Section 2.3, this property
plays a vital role in developing a physically consistent and stable numerical scheme. Since
this antisymmetry property is a result of integration by parts, its discrete counterpart is
identified as a summation-by-parts rule.

Another form of symmetry is found for k = 1, namely D̃n−2 = (D1)
T
. For n = 2

and n = 3 this yields D̃0 = (D1)
T
and D̃1 = (D1)

T
, respectively. This is the discrete

representation of curl = curlT, meaning that the curl operator is symmetric (aka self-
adjoint). Finally, it can be observed that expression D̃1D̃0 = 0 for n = 2 or D̃2D̃1 = 0 for
n = 3 discretely represents the identity div curl = 0 (the divergence of a curl is zero).

2.5.7 Discrete Hodge star operators

The duality between the primal and dual mesh elements suggests that we can define a
mapping between a primal k−form and a dual (n− k)−form. In algebraic topology, this
mapping is achieved with the help of the discrete Hodge star operator. This discrete
operator will be used later on in the discretization process. While the discrete exterior
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derivative is uniquely determined by the Stokes’ theorem, there is a great variety of discrete
Hodge star operators. In a nutshell, a choice of dual mesh induces a choice of discrete
Hodge star.

Given the vector space of discrete k−forms of primal mesh K on Ω ⊂ R2, Ck(K)
and its dual, Cn−k(K̃), the kth discrete Hodge star operator is defined as a linear map
Hk : Ck(K) → Cn−k(K̃) and is represented as a square matrix of size |Ck| × |Ck|. The
structure of the primal Hodge star matrix Hk (for k = 0, . . . , n) depends on the dual mesh.
In particular, the metric of the mesh geometry, such as the size and shape of the mesh
elements, is the key ingredient of the Hodge star operator.

As will be explained in Section 2.5.8, a required condition for numerical stability is
that the discrete Hodge star matrix is positive definite and symmetric. For this reason, we
will use the circumcentric dual for the construction of a primal discrete Hodge star matrix.
Particularly, the DEC (Discrete Exterior Calculus) approach of [33, 22, 23] is adopted in
the current work.

Matrix Hk maps from a primal k−form to a dual (n− k)−form. This mapping must be
consistent in the sense that both the primal and dual quantities have the same density. For
example, for a given velocity vector field in R3, a primal 1−form characterizes the total
circulation along the primal edge while a dual 2−form represents the total flux through to
the dual face. To be consistent, the primal 1−form must be scaled by the size of the edge
while the dual 2−form by the size of the face. Thus we wish to have the following

1

| ⋆ σ(k)|

∫
⋆σ(k)

⋆γ(k) =
1

|σ(k)|

∫
σ(k)

γ(k)

where ⋆σ(k) is the dual of the k−cell σ(k) and ⋆γ(k) is the dual of the k−form γ(k). Now any
primal cell σ(k) and its circumcentric dual ⋆σ(k) are mutually orthogonal. This implies that
for a particular primal cell and its dual, we have

1

|σ̃(n−k),i|
⟨σ̃(n−k),i, ⋆γ

(k)⟩ = 1

|σ(k),i|
⟨σ(k),i, γ

(k)⟩

and so,
⋆γi

|σ̃(n−k),i|
=

γi
|σ(k),i|

The kth circumcentric primal Hodge star is thus a diagonal matrix with the entries

[Hk]i,i =
|σ̃(n−k),i|
|σ(k),i|

, k = 0, . . . , n

Hence, the action of Hk on γ(k) (a column vector) is obtained by the multiplication Hkγ(k)

which is a dual (n− k)−form.
We also define the circumcentric dual Hodge star H̃n−k which is the map from Cn−k(K̃)

to Ck(K), with k = 0, . . . , n, and is simply the inverse of the primal Hodge star, that is,

H̃n−k =
(
Hk
)−1

. This inverse can be found immediately when a circumcentric dual mesh is
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employed, provided that the primal mesh is well centered. The choice for a circumcentric
dual mesh is considered as an advantage compared to a barycentric dual mesh because
barycentric primal Hodge matrices are not always invertible while dual Hodge matrices are
typically dense due to the loss of the orthogonality property [6]. This advantage will be
elaborated in Section 2.5.8.

Let us continue with dimension n = 2. As an example, we consider a simplicial mesh
consisting of well-centered triangular cells. Figure 2.4 illustrates the different primal and
dual k−cells of a 2−simplex. Their volumes are also indicated in the figure. Let Nv, Ne

Figure 2.4: The primal triangular cell with its circumcentric dual. On the top row are
shown three triangles with a 0−cell, 1−cell and 2−cell, respectively. Furthermore, le is the
length of the primal edge and As is the area of the primal cell. By convention, the size of
the vertex is 1. The bottom row shows the respective dual (2− k)−cells as highligted inside
the triangles and are constructed from the circumcentric subdivision. Quantities Av and de
indicate the area of the whole dual cell and the length of the whole dual face, respectively
(they both are resided in adjacent primal cells as well). The symbol ⋆ signifies the Hodge
star that maps from the primal mesh to the dual mesh and conversely. Note that the dual
mesh is not explicitly used, only the volume of the dual mesh elements is stored.

and Nc be the number of primal vertices, edges and cells, respectively. The corresponding
(circumcentric) primal Hodge star matrices are then given by

[H0]i,i = Av , i = 1, . . . , Nv (2.19)

[H1]i,i =
de
le

, i = 1, . . . , Ne (2.20)

[H2]i,i =
1

As

, i = 1, . . . , Nc (2.21)
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Clearly, the entries of the Hodge matrices are metric dependent and are generally not
dimensionless. It is interesting to note that the geometric interpretation of the action of
Hodge matrix H1 is a rotation of a vector in R2 counterclockwise by 90o. In addition,
matrix H0 converts a scalar field to an area-integrated field while the action of H2 is to get
a cell-averaged value of the cell-integrated field variable.

If the computational mesh is well centered, the above matrices are positive definite.
However, for a right-angled triangle, matrix H1 is singular since the length of the edge dual
to its hypotenuse is zero. Moreover, the circumcenter of an obtuse triangle is located outside
the triangle, implying that H1 is negative definite. To overcome these unwanted cases, with
SWASH the barycenter (or the centroid) is chosen locally instead of the circumcenter; see
Section 2.5.10. Note that in case of a Cartesian mesh, the matrices Hk (k = 0, 1, 2) are
always positive definite.

2.5.8 Discrete inner products

A special feature of an invertible Hodge star matrix is that it induces a discrete inner
product. Let now α(k) and β(k) be the real-valued k−forms defined on primal mesh K. An
inner product of these two forms is defined by

⟨α(k), β(k)⟩Hk :=
(
α(k)

)T Hkβ(k)

This bilinear operator ⟨·, ·⟩Hk : Ck(K) × Ck(K) → R is symmetric and positive definite,
provided that Hk is a symmetric positive definite matrix. Thus for such a matrix, its inverse
exists and is symmetric and positive definite as well. Consequently, another discrete inner
product can be provided in the following way,

⟨α̃(k), β̃(k)⟩H̃k =
(
α̃(k)

)T H̃kβ̃(k) =
(
β̃(k)

)T (
H̃k
)T

α̃(k) =
(
β̃(k)

)T
H̃kα̃(k) = ⟨β̃(k), α̃(k)⟩H̃k

where α̃(k), β̃(k) ∈ Ck(K̃).
Next, let the following discrete forms be given

β̃(n−k) = Hkβ(k) , α(k) = H̃n−k α̃(n−k)

then we have
⟨α(k), β(k)⟩Hk =

(
α(k)

)T
β̃(n−k)

and

⟨α̃(n−k), β̃(n−k)⟩H̃n−k =
(
β̃(n−k)

)T
α(k)

so that
⟨α̃(n−k), β̃(n−k)⟩H̃n−k = ⟨α(k), β(k)⟩Hk

As a matter of notation, inner products of mixed forms can be written as

⟨α(k), β̃(n−k)⟩Hk = ⟨α(k), β(k)⟩Hk
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and similarly,
⟨α̃(n−k), β(k)⟩H̃n−k = ⟨α̃(n−k), β̃(n−k)⟩H̃n−k

An important aspect of inner products is related to the adjoint of linear operators.
Recall from functional analysis that every linear operator on a Hilbert space comes with an
adjoint operator, and they have a natural relation with respect to inner products. Let V k

and V k+1 be inner product vector spaces and Lk : V k → V k+1 be a linear operator. Then

this operator induces an adjoint operator
(
Lk
)T

: V k+1 → V k in the following way

⟨Lkα(k), β(k+1)⟩Hk+1 = ⟨α(k),
(
Lk
)T

β(k+1)⟩Hk , ∀α(k) ∈ V k , ∀β(k+1) ∈ V k+1

with the inner products defined on the respective vector spaces.
Next, let us consider a linear map from V k to itself, denoted Ck : V k → V k. This

operator is called self-adjoint (or symmetric) if

⟨Ckα(k), β(k)⟩Hk = ⟨α(k),Ckβ(k)⟩Hk , ∀α(k) , β(k) ∈ V k

implying that (
Ck
)T

= Ck

In addition, the operator is called skew-adjoint (or skew-symmetric) if

⟨Ckα(k), β(k)⟩Hk = −⟨α(k),Ckβ(k)⟩Hk , ∀α(k) , β(k) ∈ V k

and hence, (
Ck
)T

= −Ck

This operator has the special property that ⟨α(k),Ckα(k)⟩Hk = 0 for all α(k) ∈ V k.
The role of discrete inner products in the discretization process becomes clear by

considering the Hamiltonian of the inviscid shallow water equations (see Section 2.3). In
particular, for a given discrete k−form α(k), its energy norm ⟨α(k), α(k)⟩Hk is properly defined
by the symmetric positive definite Hodge star, making it possible to derive directly an
energy conserving (and thus stable) discretization. The above considerations will be useful
later on in Section 2.6.

2.5.9 Discrete de Rham complexes

A cochain complex is a sequence of vector spaces and linear operators (V k,Lk) such that
Lk+1 Lk = 0. When these spaces refer to the spaces of discrete forms with the same
orientation while the linear operator is the discrete exterior derivative, then this cochain
complex is called the discrete de Rham complex.

Using the discrete exterior derivative and discrete Hodge star, a diagram can be composed
as illustrated in Figure 2.5. This diagram reflects on how the discretization process works.
The lower part of the diagram is the sequence of spaces of inner-oriented discrete forms
Ck(K) connected with Dk. This sequence is a cochain complex since Dk+1 Dk = 0. The
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C0(K) C1(K) C2(K)

C2(K̃) C1(K̃) C0(K̃)

D0 D1

D̃1 D̃0

H0 H̃2 H1 H̃1 H2 H̃0

Figure 2.5: The discrete double de Rham complex in two dimensions with the lower part
depicting the cochain complex of inner-oriented discrete forms and the upper part that
of the outer-oriented discrete forms. Let Lk denotes either Dk or D̃k, then each of these
cochain complexes is a sequence of linear spaces of discrete forms connected with the
exterior derivative Lk with the property Lk+1 Lk = 0. The cochain complexes of inner- and
outer-oriented forms are linked by means of the Hodge star operators Hk and H̃k.

upper part of the diagram constitutes a cochain complex of outer-oriented discrete forms
Ck(K̃) with the operator D̃k that satisfies the property D̃k+1 D̃k = 0. These two oriented
cochain complexes are dual with respect to each other. Note that we have tacitly assumed
that the primal mesh K is endowed with inner orientation and the dual mesh K̃ with outer
orientation, but this is rather an arbitrary choice. (In Section 2.6, we will choose this the
other way around.) Finally, the primal and dual complexes are connected by the Hodge
star operator, which completes the double de Rham complex as shown in Figure 2.5.

In the discrete setting, the horizontal links are encoded by the incidence matrices based
on the topological relations of mesh objects. The vertical links are constructed through the
Hodge star matrices that are completely metric (or local) dependent. It is precisely this
construction that is a determining factor in the development of the numerical framework to
be discussed in Section 2.6.

As a first example, the double de Rham complex can be employed to construct the
Laplacian of the pressure: ∆p = ∇ · ∇p. We start at the bottom left of the diagram by
defining an inner 0−form, denoted π(0). Next, we apply the matrix D0 (the gradient) to
obtain an inner 1−form. This is followed by the Hodge matrix H1 to convert the result to an
outer (n− 1)−form. (We could have written “1−form” since n = 2, but to emphasize this
outer form embedded in Rn we use the space dimension.) Then, matrix D̃1 (the divergence)
or D̃n−1 (again to emphasize its relation to outer forms) is applied to get an outer n−form.
Finally, this volume form is transformed back to a point value by means of the Hodge matrix
H̃2 or here H̃n. (The Laplacian itself is a scalar field function.) Thus, the discretization of
the Laplace (or Poisson) operator of the pressure is given by

H̃n D̃n−1H1D0 π(0)

and is considered mimetic because it respects the vector calculus identities and symmetries.
This discrete scalar Laplacian can be implemented on arbitrary well-centered meshes, either
2D or 3D, provided that their metric is given.

The second example demonstrates how to discretize ∆u. The velocity vector u is
discretized as an inner 1−form. We denote by υ(1) this discrete form. We thus start at the
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bottom center of the diagram. We can walk through the diagram in two ways. We can first
apply the matrix D1 (the curl), next the matrix H2 followed by D̃n−2 (another curl) and
finally matrix H̃n−1. The other route is first H1, then D̃n−1 (the divergence), matrix H̃n

and lastly the matrix D0 (the gradient). Now, these two operations together make up the
vector Laplacian. Hence, its discretized form reads

D0 H̃n D̃n−1H1 υ(1) + H̃n−1 D̃n−2H2D1 υ(1)

which is precisely the vector calculus identity ∆u = ∇ (∇ · u)−∇×(∇× u). Note, however,
that the appearance of the minus sign is enforced because vector calculus does not deal
with geometry and orientation.

The above examples demonstrate nicely the strength of the double de Rham complex
that provides a natural way to discretize first and second order differential operators while
mimicking vector calculus identities. This promotes the physical fidelity and accuracy of
the discretization.

2.5.10 Examples

In this section we provide some sample calculations to see how things work out in the case
of a square cell (or a rectangle), an equilateral triangle cell and a right-angled triangle cell
in R2 as depicted in Figure 2.6. Vertices, edges and the face (either square or triangle) are

Figure 2.6: Primal computational cells with oriented k−cells (k = 0, 1, 2): (a) square, (b)
equilateral triangle, and (c) right-angled triangle. Orientation is indicated with the gray
arrows.

denoted as vi, ei and s1, respectively, for i = 1, . . . , p with p = 3 in case of triangles and
p = 4 in case of the square. The adopted convention for the inner orientation to these mesh
elements is shown in the figure, with the condition that the edges are oriented such that
they point toward the vertex index of greater value.
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Let us consider the square first as shown in Figure 2.6a. This square is a cell complex,
denoted Ksq. The vertices of this square, {v1, v2, v3, v4}, are the basis of the linear space of
0−chains. Examples of 0−chains are

v1,

v2,

v3 + v4,

v1 + v2 + v4,

etc.

Similarly, the oriented edges of Ksq, {e1, e2, e3, e4}, are the basis of C1(Ksq). A few examples
of 1−chains are

e1,

e1 + e2 − e3,

−e1 + e4

The corresponding row vectors are
[
1 0 0 0

]
,
[
1 1 −1 0

]
, and

[
−1 0 0 1

]
. Next,

we can take the boundary of such chains, namely,

∂1e1 = v2 − v1,

∂1(e1 + e2 − e3) = ∂1e1 + ∂1e2 − ∂1e3 = v2 − v1 + v4 − v2 + v3 − v4 = v3 − v1,

∂1(−e1 + e4) = −∂1e1 + ∂1e4 = v1 − v2 − v1 + v3 = v3 − v2

Referring to Eq. (2.16), the boundary of the second chain is made up of all 0−chains of cell
complex Ksq with coefficients c1 = 1, c2 = 1, c3 = −1, and c4 = 0, whereas the orientation
coefficients are o1,1 = −1, o1,2 = 1, o2,1 = −1, o2,2 = 1, o3,1 = −1, o3,2 = 1, and o4,1 = −1,
o4,2 = 1.

There is only one oriented 2−chain which is s1. Its boundary equals

∂2s1 = e1 + e2 − e3 − e4

The boundary of this boundary is zero, that is,

∂1∂2s1 = ∂1e1 + ∂1e2 − ∂1e3 − ∂1e4 = v2 − v1 + v4 − v2 + v3 − v4 + v1 − v3 = 0

By virtue of Eq. (2.17), the boundary operators ∂1 and ∂2 are encoded, respectively, by
the following incidence matrices

D1 =


−1 +1 0 0
0 −1 0 +1
0 0 −1 +1

−1 0 +1 0

 , D2 =
[
+1 +1 −1 −1

]
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For example, the boundary of the second 1−chain from the above example can be obtained
as follows

[
1 1 −1 0

] 
−1 1 0 0
0 −1 0 1
0 0 −1 1

−1 0 1 0

 =
[
−1 0 1 0

]
which implies ∂1(e1+ e2− e3) = −v1+ v3. One can easily verify that the boundary operator
is nilpotent, that is, D2D1 = 0T.

Since the coboundary operator is the dual of the boundary operator, we find

D0 =


−1 +1 0 0
0 −1 0 +1
0 0 −1 +1

−1 0 +1 0

 , D1 =
[
+1 +1 −1 −1

]

Note that these matrices are coordinate independent and hold for an arbitrary (curved)
quadrilateral mesh element.

Discrete k−forms maps an oriented k−cell to a real value. For instance, a 0−form
represents a scalar function that produces its value on vertices. Let us define the pressure p
on vertices vi, denoted πi = p(vi). This discrete inner 0−form is represented as a column
vector with 4 entries. We multiply this vector from the left by matrix D0,

−1 +1 0 0
0 −1 0 +1
0 0 −1 +1

−1 0 +1 0



π1

π2

π3

π4

 =


π2 − π1

π4 − π2

π4 − π3

π3 − π1


This result stems from the generalized Stokes’ theorem, namely, evaluating the exterior
derivative of p on edge e1 is identical to evaluating p on the edge boundaries as p(v2)−p(v1).
This is simply the classical fundamental theorem of calculus for line integrals. Thus, the
value of the 1−form δ(0)p is established as the integral quantity on oriented edges. Matrix
D0 is therefore the discrete analogue of the gradient operator ∇.

As a second example, let γi be defined as the circulation along edge ei. Then operator
D1 relates this inner 1−form to the inner 2−form, as follows

[
+1 +1 −1 −1

] 
γ1
γ2
γ3
γ4

 = γ1 + γ2 − γ3 − γ4

Here, the analogy with the Stokes’ curl theorem is obvious and D1 is thus the discrete
version of the curl operator ∇×. In addition, we find that D1D0 = 0T, which is the discrete
analogue of the identity ∇×∇ = 0.
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To summarize, the discrete operators D0 and D1 represent exactly the continuous
gradient and curl operators, respectively, on a 2D primal mesh without reference to any
coordinate system.

Next, we turn to the equilateral triangle shown in Figure 2.6b. From this we can deduce
the following discrete version of the gradient and the curl, respectively,

D0 =

−1 +1 0
0 −1 +1

−1 0 +1

 , D1 =
[
+1 +1 −1

]
Again, we observe that D1D0 = 0T. Since the boundary and coboundary operators are
defined purely topologically, the matrices found above also apply to the right-angled triangle
of Figure 2.6c.

In the following, we consider the dual of the square and the triangles as shown in
Figure 2.7. The labeling of the mesh elements are now indicated with a tilde. This time we

Figure 2.7: Dual computational cells with oriented (2− k)−cells (k = 0, 1, 2): (a) square,
(b) equilateral triangle, and (c) right-angled triangle. Orientation is indicated with the gray
arrows.

only have one vertex and multiple faces for each mesh cell. Moreover, all the 1−cells and
2−cells are open ended, and therefore the considered mesh cells are not a cell complex. We
also notice that one edge is “missing” (its length is zero) in the right triangle cell (Fig. 2.7c).

The outer orientation on the dual cells is depicted in Figure 2.7. For the first example,
the dual of the square, the boundary operators acting on dual 1−cells and 2−cells are given
by, respectively,

∂̃1


ẽ1
ẽ2
ẽ3
ẽ4

 =


ṽ1
ṽ1

−ṽ1
−ṽ1

 , ∂̃2


s̃1
s̃2
s̃3
s̃4

 =


ẽ1 + ẽ4
ẽ2 − ẽ1
ẽ3 − ẽ4

−ẽ2 − ẽ3


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Subsequently, the coboundary operators can be found as follows

D̃0 =


+1
+1
−1
−1

 , D̃1 =


+1 0 0 +1
−1 +1 0 0
0 0 +1 −1
0 −1 −1 0


Note that D̃1 is the discrete analogue of the divergence operator ∇·. We also observed that
D̃1 is the negative transpose of D0, that is, D̃1 = −(D0)T, which is the discrete version of
the antisymmetry relation ∇· = −(∇)T.

As illustrated by Figure 2.7a, operator D̃0 is identified with the curl operator. Moreover,
we also see that D̃0 = (D1)T, which implies ∇× = (∇×)T. Finally, we find that D̃1D̃0 = 0
which is the discrete representation of ∇ · ∇× = 0.

In the same vein, we can derive the coboundary operators for the triangles of Figure 2.7b
and 2.7c, which are

D̃0 =

+1
+1
−1

 , D̃1 =

+1 0 +1
−1 +1 0
0 −1 −1


Despite the missing edge ẽ2 in the right triangle of Figure 2.7c, one should remember
that the coboundary operators are topological, that is, independent of the shape of mesh
elements. Finally, one can observe that the above findings related to symmetries and
identities remain valid for triangular cells.

Thus far, we have seen that the discrete exterior derivative represents the exact discret-
ization of the differential operators grad, curl, and div in the form of matrices that are
purely topological. Such matrices act on coordinate-free variables or physical quantities
(discrete forms) defined on vertices, edges and faces. Since the discrete exterior derivative
obeys the generalized Stokes’ theorem by construction, the resulting discrete grad, curl,
and div operators naturally mimic the vector calculus identities curl grad = 0 and div

curl = 0 and the symmetry relations div = −gradT and curl = curlT.

The discrete Hodge star operators, on the contrary, do not depend on the mesh topology,
but only on the metric (lengths, areas and volumes) of the various mesh elements. A
discrete Hodge star maps between variables living on an inner-oriented mesh and variables
living on an outer-oriented mesh. This map always involves some form of approximation.
Basically, a choice of discrete Hodge star is much like a choice of dual mesh. Here, we
adopted the circumcentric dual like in the examples above (cf. Figure 2.7) which is desired
when considering the stability of a numerical scheme.

We now return to the examples to demonstrate how the circumcentric Hodge star
matrices are computed. Recall the square of Figure 2.7a. The size of this square is 1
and the circumcenter is (1

2
, 1
2
). Hence, the intrinsic volume of the primal edges is |ei| = 1,

i = 1, . . . , 4, and the primal face is |s1| = 1. Note that |vi| = 1 by definition. Furthermore,
we have for the dual edges and faces inside the square, |ẽi| = 1

2
and |s̃i| = 1

4
, i = 1, . . . , 4.
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The Hodge star matrix that acts on 0−, 1− and 2−forms is then given by, respectively,

H0 =
1

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , H1 =
1

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , H2 =
[
1
]

We can conclude that all the three matrices are diagonal and positive definite.
Next, consider the equilateral triangle of Figure 2.7b. Let v1 = (−1

2

√
3, 0), v2 = (1

2

√
3, 0)

and v3 = (0, 3
2
) be vertices of the triangle. The circumcenter is then (0, 1

2
) and the area of

the triangle is 3
4

√
3. Furthermore, |ei| =

√
3, |ẽi| = 1

2
, |s1| = 3

4

√
3 and |s̃i| = 1

4

√
3, i = 1, 2, 3.

The corresponding Hodge star matrices are then given by

H0 =

√
3

4

1 0 0
0 1 0
0 0 1

 , H1 =

√
3

6

1 0 0
0 1 0
0 0 1

 , H2 =
4
√
3

9

[
1
]

which are again symmetric positive definite.
For the final example the vertices of the right triangle of Figure 2.7c are v1 = (0, 0),

v2 = (1, 0) and v3 = (0, 1). Thus, with |s1| = 1
2
, |s̃1| = 1

4
, |s̃2| = |s̃3| = 1

8
, we have

H0 =
1

8

2 0 0
0 1 0
0 0 1

 , H2 =
[
2
]

which are positive definite. Now, the triangle is not well centered since the circumcenter
(1
2
, 1
2
) lies exactly on the longest side of the triangle, meaning that |ẽ2| = 0. This implies

that matrix H1 is not invertible because it is a singular matrix, namely,

H1 =
1

2

1 0 0
0 0 0
0 0 1


In SWASH, this is remedied by choosing the barycenter (the mean of the three vertices)
instead. In the current example, this center is (1

3
, 1
3
). Consequently, |e1| = |e3| = 1,

|e2| =
√
2, |ẽ1| = |ẽ3| =

√
5
6
, |ẽ2| =

√
2
6

and |s̃i| = 1
6
, i = 1, 2, 3, which yields

H0 =
1

6

1 0 0
0 1 0
0 0 1

 , H1 =
1

6

√5 0 0
0 1 0

0 0
√
5

 , H2 =
[
2
]

In particular, the use of this adapted matrix H1 gives rise to a locally inconsistent calculation
of a dual 1−form from a primal 1−form and vice versa. (This also holds true for matrix
H0, but as will become apparent, it will not be used in our discretization method; see
Section 2.6.) Yet, in practice we see that the impact of the discretization error induced by
this local inconsistency is typically very limited. Note that, in this context, generation of
well-centered meshes is not strictly required for our discretization method (see also [57]).
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2.6 Mimetic framework for the inviscid shallow water

equations on orthogonal meshes

2.6.1 Introduction

Section 2.5 addressed some key ideas that are invaluable for the discretization process,
namely, the discrete forms, the generalized Stokes’ theorem, the discrete exterior derivative
and the primal-dual meshes. The reason is threefold.

First, unlike vectors, discrete forms are coordinate and metric free and therefore have
the same form and properties in all coordinate systems. Since discrete forms are defined
by their values at discrete mesh elements, this also highlights their different roles in the
spatial discretization (e.g. mass circulation vs mass flux while both representing the velocity
vector).

Secondly, the main application of the generalized Stokes’ theorem is to construct the
discrete exterior derivative and, in turn, to derive discrete counterparts of the continuous
differential operators, viz. grad, curl and div. Like discrete forms, the associated discrete
operators are independent of the coordinate system. Moreover, they have an intrinsically
discrete nature that allows their exact representation in the numerical framework, including
the vector calculus identities curl grad = 0 and div curl = 0.

Finally, the two types of orientation (inner and outer) of the various mesh elements
reveal the primal-dual grid structure of the discretization. This naturally induces the layout
of staggered grids that lies at the root of the Arakawa C-grid finite difference method. More
importantly, the primal-dual framework enables to construct exact discrete expressions for
symmetry relations like div = −gradT, which is required to prevent nonlinear computational
instability.

The main benefits of obeying identities and symmetry relations at the discrete level
include the compatibility with physics and conservation of energy. In particular, mimetic
methods possessing these properties are useful when not all scales of nonlinear motion can
be resolved without sacrificing physical accuracy, especially when grid refinement or high
order discretizations are insufficient. This means that mimetic methods construct physically
consistent numerical schemes that lead to high final accuracy, even though they may display
low rates of mesh convergence. This approach is an effective way to deal with under-resolved
flow problems such as rapidly varied flows and nonlinear wave transformations featuring
energy transfer between various wave scales. In addition, mimetic methods have favorable
stability properties and do not suffer from spurious modes. Especially, the Arakawa C-grid
method is best known for its stability and efficiency and has attracted great attention of
various researchers and engineers in the last five decades.

This section is devoted to deriving a general mimetic framework for the numerical
solution of the inviscid shallow water equations (2.1) and (2.2) on orthogonal meshes by
utilizing the concepts of algebraic topology. This derived framework forms the basis for the
classical Arakawa C-grid for rectilinear grids in Chapter 3, for curvilinear grids in Chapter 4,
and for unstructured triangular meshes in Chapter 5.
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2.6.2 General mimetic framework

Let Ω ⊂ R2 be a bounded domain on which Eqs. (2.1)−(2.2) are given. This domain is
discretized by a well-centered polygonal mesh, either triangular or rectangular. Since the
mesh is generated by a mesh generator, its boundary edges are aligned with the domain
boundaries. Hence, this mesh is a cell complex, and for that reason, it is considered as the
primal mesh. On the other hand, its circumcentric dual is not a cell complex because the
boundary of dual cells is missing near the domain boundary. Figure 2.8 shows an example
of a triangular mesh and its dual.

Figure 2.8: Parts of staggered orthogonal triangular mesh and the primary unknowns
involved for the shallow water equations. Left panel depicts the primal mesh (cell complex
shown as solid lines) with outer discrete forms ν(n) and ϕ(n−1), and right panel shows the
dual mesh (solid lines indicating not a cell complex) with inner discrete forms η̃(0) and γ̃(1).
Definitions of discrete forms and mesh elements are provided in the text.

The computational mesh is composed of Nv vertices, Ne edges/faces and Nc cells. Here,
we make an explicit distinction between edges as lines (1−cells) on the one hand, and
faces as planes ((n− 1)−cells) on the other, even though they are coincident lines in two
dimensions (n = 2). It should be noted that the orientation of primal faces induces the
orientation of dual edges. Furthermore, by duality, Nc, Ne and Nv also give the number of
vertices, edges and cells, respectively, in the dual mesh.
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Discretization of continuity equation

We start with the semi-discretization of the continuity equation (2.1). To enforce mass
conservation in every cell of the mesh, we choose the primal mesh to which the discretization
of Eq. (2.1) will be associated. This equation contains two unknowns, namely, h and q. The
mass flux q is encoded by a discrete outer (n− 1)−form. It is represented by its surface
integrals over the outer-oriented faces of the mesh. Each integral value is constant per
planar face. For instance, there are three face values for each primal triangular cell (see left
panel of Figure 2.8). Also note that the outer orientation of the face defines a direction of
positive flux; see Figure 2.3b. The set of the integral values on faces provides a metric-free
representation of the flux field. This set is arranged as a column vector with Ne entries
with each entry assigned to a mesh face. We denote this vector by ϕ(n−1).

In the context of incompressible shallow water flows with free surface, mass is usually
expressed in terms of the volume of the water column, or the water height h(x, t), while the
water density is assumed constant throughout the flow field. Therefore, by mass we refer to
the area-integrated height and is treated as an outer discrete n−form. Its discretization is
thus defined on primal n−cells (here, computational mesh cells). It is an outer-oriented
volume form because the net change in the water column is due to the net outflow through
the boundaries of the n−cell (cf. Figure 2.3b). The associated discrete values are stored

as elements of a column vector of size Nc, denoted ν(n). (Each entry is given as ν
(n)
c , see

Figure 2.8.)
Clearly, the primal mesh is outer oriented; see left panel of Figure 2.8. Furthermore,

when we denote the discrete analogue of the divergence operator by the incidence matrix
Dn−1 of size Nc ×Ne, then the semi-discrete version of the continuity equation is given by

dν(n)

dt
+ Dn−1ϕ(n−1) = 0 (2.22)

which exactly conserves mass (or volume) in each cell of the mesh. Note that the action
of Dn−1 on ϕ(n−1) results in an n−form so that Eq. (2.22) consistently contains only outer
n−forms.

Discretization of flow equation

By duality, the spatial discretization of the flow equation (2.2) is implemented on the
inner-oriented dual mesh. Starting with the temporal derivative term, the quantity hu is
discretized as an inner 1−form defined on the dual edges which measures the flow circulation
along the cell edges. It is denoted by γ̃(1) which is a column vector of length Ne. Since the
dual edges are straight lines, each entry is constant per edge and also defines the flow along
the edge (as indicated by γ̃

(1)
ẽ in the right panel of Figure 2.8). Accordingly, it describes

the flow field on the dual mesh, independent of the coordinate system.
We continue with the right-hand side of Eq. (2.2) which is the depth-integrated pressure

gradient. It represents a driving force along the flow direction. For consistency reasons,
the discretization of the term h∇ζ must be an inner 1−form evaluated on the dual edges.
Here, we show how to derive its discretization in a mimetic way.
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Let ẽ be a dual edge, ṽl be its left vertex and ṽr its right vertex, see right panel of
Figure 2.8. According to the inner orientation of 1−cells (cf. Figure 2.3a), the boundary of
ẽ is given by ∂̃1ẽ = ṽr − ṽl. Next, let us denote the grid functions (discrete 0−forms) for
the free surface, the bed level and the water depth by ζi, di and hi, respectively, with i the
index of dual vertex ṽi. By observing that

∇ 1
2
gh2 = gh∇ζ + gh∇d

the application of the dual coboundary operator δ̃0 to 1
2
gh2 on ẽ yields

1

2
gh2

r −
1

2
gh2

l =
1

2
g (hr + hl) (hr − hl) = ghẽ (ζr − ζl) + ghẽ (dr − dl)

where hẽ is the arithmetic mean of the two water depths, each on one side of the edge,

hẽ =
1

2
(hl + hr)

Note that this average value, although associated with the dual edge, is a 0−form. (The
sum of two k−forms is a k−form.)

The above discretization is exact and provides a discrete expression for the product
term gh∇ζ in terms of inner 0−forms. We first consider both operands separately and then
look into the product term.

First, we sample the discrete values of the water depth at the vertices of the dual mesh
to form a column vector η̃(0) with Nc elements (see also right panel of Figure 2.8). We
compute the arithmetic mean of this inner 0−form on the dual edges as explained above.
We denote this mean by η̃(0). We observe that this action of averaging returns a column
vector of length Ne. It is important to note that the arithmetic averaging of an arbitrary
discrete form is completely unrelated to the metric.

Next, let us collect all the point values of the water level ζi into a column vector ζ̃(0) of
size Nc. The discretization of ∇ζ on the dual mesh is then given by D̃0ζ̃(0) which is the
inner 1−form defined on the dual edges. Here, the incidence matrix D̃0 of size Ne × Nc

represents the discrete gradient operator δ̃0 on the dual mesh. Note that by construction
D̃0 = − (Dn−1)

T
, which is required to ensure energy conservation (see below). It should also

be highlighted that D̃1 D̃0 = 0T which implies that the discrete pressure gradient is curl
free. Its practical importance is most evident for rotating flow conditions, as the pressure
gradient cannot act as a spurious source of vorticity ∇× hu.

Finally, the mimetic discretization of the pressure gradient gh∇ζ is given by

g η̃(0) ⊙ D̃0ζ̃(0)

where ⊙ symbolizes the element-wise multiplication of two vectors of the same dimension.
This binary operation returns an inner 1−form of the same length. (The multiplication of
any k−form by a 0−form is a k−form.)

With respect to the second term on the left-hand side of Eq. (2.2), the conditions
imposed on the discretization of the term Au = ∇ · (q⊗ u) are discussed in Section 2.3. In
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particular, its discretization must result in a matrix with skew-symmetric off-diagonal part,
as given by Eq. (2.13). This will be addressed in detail in Chapters 3, 4 and 5, but for now
it is designated as Aυ̃(1) which, for consistency, must be an inner 1−form living on dual
edges (see also Section 2.4.5). Here, A is the discrete version of A and is encoded as a square
matrix of dimension Ne ×Ne. Note that A is not a topological operator and is therefore
dependent on the metric, which in turn emerges as a principal source of discretization
error. Furthermore, we define the inner 1−form υ̃(1) as the discrete representation of the
depth-averaged velocity field u integrated along the dual edges. This form is given as a
column vector of size Ne.

Putting this all together, the semi-discretization of the flow equation reads

dγ̃(1)

dt
+ Aυ̃(1) = −g η̃(0) ⊙ D̃0ζ̃(0) (2.23)

The primary unknown here is the cell edge tangential velocity. Consequently, conservation
of momentum cannot be guaranteed by this discretization since the full momentum vector
is not directly available. (Remember that this would require the use of vector-valued
discrete forms.) However, like kinetic energy (see below), the momentum vector field can
be reconstructed out of the discrete 1−form and, in turn, a proof of discrete conservation
of momentum can then possibly be established.

For example, the 1−form γ̃(1) can be converted into the vector field hu by means of the

sharp (♯) operator:
(
γ̃(1)
)♯

= hu (see, e.g. [46]). Alternatively, given a general coordinate
system ξ = (ξ1, ξ2) and the associated unit covariant base vectors e(α) = a(α)/

√
gαα (no

sum) with a(α) = ∂x/∂ξα and (metric tensor) gαα = a(α) · a(α), the discrete momentum in

direction ξα can be defined as ⟨
(
e(α)
)♭
, γ̃(1)⟩H̃1 . Here, the flat operator ♭ converts a vector

into a 1−form. For an introduction to the operators ♯ and ♭, also known as the musical
isomorphisms, see the lecture notes of [20].

Another example is to derive the discrete momentum vector from the tangential velocity
on the cell edges and then subsequently to construct its discrete conservation equation.
This is the approach that we will follow in the present work, see Chapter 5.

Closure of the governing equations

At this point we observe that Eqs. (2.22) and (2.23), with the exception of the second term
Aυ̃(1), are exact in the sense that they are independent of the metric. However, there are
more unknowns than equations. Five discrete forms can be distinguished of which two are
designated as the primary unknowns of the governing equations, namely, the water depth
η̃(0) on the dual vertices and the depth-averaged velocity υ̃(1) on the dual edges. Note that
the free surface ζ̃(0) can immediately be derived from η̃(0). The other three discrete forms
are ν(n), ϕ(n−1) and γ̃(1).

To close the system of equations it is required to relate these three discrete forms to the
prognostic variables. Such relations are commonly called constitutive relations2 and are

2In physics, the concept of constitutive relations provides a hypothesized relationship between two
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established by making use of the Hodge star matrices. Note that they require the notion of
metric. Based on the de Rham complex diagram of Figure 2.5 we can relate discrete forms
defined on the dual mesh to those on the primal mesh, or vice versa, using the Hodge star
matrices.

In the following, we will treat the discrete forms ϕ(n−1), ν(n) and γ̃(1) in turn. First,
using the matrix H̃1 we define the constitutive mapping from the depth-averaged velocity
circulation along the dual edge (with units of m·s−1·m) to the depth-averaged mass flux
velocity per unit cross area (given in units of m2·s−1·m−2) integrated over a primal face (in
m2) as

υ(n−1) = H̃1 υ̃(1)

Recall that matrix H̃1 is invertible if the computational mesh is well centered. This is thus
a critical part of the present method. Next, we define the outer mass flux as (n− 1)−form
ϕ(n−1) and it is computed via υ(n−1) according to

ϕ(n−1) = υ(n−1) ⊙ η̃(0) (2.24)

As will become apparent later on, Eq. (2.24) is an essential step to achieve discrete energy
conservation (see below). This requirement also holds true for nonuniform meshes.

Another discrete constitutive equation takes the following form

ν(n) = H̃0 η̃(0)

with H̃0 relating the water depth (expressed in m) to the volume of the water column (in
m3). Since this matrix is always invertible (each polygonal cell has non-zero area), we will
use its inverse, that is, the primal Hodge matrix Hn.

Since the water depth is one of the variables that is computed explicitly, we wish to
express γ̃(1) in terms of a product of h and u. To this end, the term hu must be considered
as a 1−form living on dual edges. Therefore, form η̃(0) must thus be transformed onto edges.
This transformation is performed by means of an interpolation matrix of size Ne × Nc

and the result of this operation is a column vector of length Ne. Note that this operator
is a linear map within the dual mesh and thus should not be confused with Hodge star
operators.

For the time being, it is not relevant how the interpolation of η̃(0) to dual edges should
be done as it is not essential for the explanation of the present framework. Nevertheless, we
will see later that certain choices will be made regarding this interpolation and that these
are closely related to mass conservation. We will come back to this in Chapters 3, 4 and 5.

As said, form η̃(0) is transformed by averaging onto dual edges and the result is indicated

with a tilde, that is, η̃(0)
∼

. (The two tildes should not be confused with each other.) This
is encoded as a column vector of length Ne. Note that this discrete variable is metric

physical quantities related to a substance and so to make equations governing physical laws solvable.
Constitutive equations generally depend on the physical behavior of a particular material and are therefore
approximative in nature.
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dependent and thus involves some error, which is in contrast with the arithmetic averaging
like η̃(0). We now arrive at the expression for γ̃(1) suitable for our framework, namely,

γ̃(1) = η̃(0)
∼

⊙ υ̃(1) (2.25)

With the above discussed approximations, we obtain the following semi-discrete system
of equations written in terms of the unknowns η̃(0) and υ̃(1)

dη̃(0)

dt
+HnDn−1ϕ(n−1) = 0 (2.26)

d
(
η̃(0)
∼

⊙ υ̃(1)
)

dt
+ Aυ̃(1) = −g η̃(0) ⊙ D̃0ζ̃(0) (2.27)

which are ultimately the discretizations of Eqs. (2.1)−(2.2). Since the primitive variables
live on an inner-oriented dual mesh we call this type of discretizations the inner-oriented
discretization. As a side note, we could have chosen an outer-oriented discretization with
primitive variables ν(n) and υ(n−1), but we have decided not to.

The inner-oriented discretization is essentially a manifestation of the staggered Arakawa
C-grid type discretization on orthogonal meshes. Eqs. (2.26)−(2.27) represent a suitable
basis for the development of the various SWASH discretization methods. As such, it can be
applied to simplicial meshes including triangular meshes (see Chapter 5) and to cubical
meshes including rectilinear grids (Chapter 3) and curvilinear grids (Chapter 4).

The compatible discretizations of the grad and div operators on primal-dual meshes
is key to developing a physically consistent and stable method. With this unique feature,
the conservation of the mass and the total energy are satisfied within round-off errors (see
below).

As for the discretization of the divergence (or advective) transport term ∇ · (q⊗ u),
that is, Aυ̃(1) in Eq. (2.27), it is useful to note that it necessarily constitutes a discretization
error. Although it is desirable to make this discretization energy conserving, as will be
discussed below, there are applications that require some form of dissipation such as, for
example, the propagation of bores and wave breaking. The usual approach is to introduce
energy dissipation implicitly through the upwind approximation of the divergence term. As
demonstrated by e.g. [110, 112], this numerical treatment allows an accurate regularization
of the shock waves while stabilizing the semi-discretization. This will be further discussed
in Chapters 3, 4 and 5.

Energy conservation

Here we proof that the system of equations (2.26)−(2.27), or alternatively Eqs. (2.22)−(2.23)
is a Hamiltonian system. The discrete version of the total energy of the system is given by

H = Hkin +Hpot =
1

2
⟨υ(n−1), ϕ(n−1)⟩Hn−1 +

1

2
g⟨ζ̃(0), ζ̃(0)⟩H̃0
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and is well defined, provided that the discrete inner products are positive definite and
symmetric. We will regularly use the algebraic properties of these inner products as outlined
in Section 2.5.8. Let us consider the two contributions of the discrete Hamiltonian separately,
first the kinetic energy part and then the potential energy part.

The discrete kinetic energy is defined by

1

2
⟨υ̃(1), υ̃(1)⟩H̃1 =

1

2
⟨υ(n−1), υ̃(1)⟩Hn−1

By analogy with its continuous equivalent, the rate of change of the discrete Hkin reads

dHkin

dt
= −1

2
⟨υ(n−1), υ̃(1) ⊙ d η̃(0)

∼

dt
⟩Hn−1 + ⟨υ(n−1),

dγ̃(1)

dt
⟩Hn−1 (2.28)

Note the use of column vector η̃(0)
∼

for expressing the water depth on dual edges. This is
consistent with the fact that the kinetic energy part is associated to inner-oriented edges.
Here again, the exact definition of this form is not relevant to what follows.

By substituting Eq. (2.23), we obtain the following result

dHkin

dt
= −1

2
⟨υ(n−1), υ̃(1) ⊙ d η̃(0)

∼

dt
⟩Hn−1 − ⟨υ(n−1),Aυ̃(1)⟩Hn−1 − ⟨υ(n−1), g η̃(0) ⊙ D̃0ζ̃(0)⟩Hn−1

and subsequently using Eq. (2.24), we have

dHkin

dt
= −1

2
⟨υ(n−1), υ̃(1) ⊙ d η̃(0)

∼

dt
⟩Hn−1 − ⟨υ(n−1),Aυ̃(1)⟩Hn−1 − ⟨ϕ(n−1), g D̃0ζ̃(0)⟩Hn−1 (2.29)

Note that the definition of ϕ(n−1) given by Eq. (2.24) is required to arrive at the last term
of Eq. (2.29).

Next, we aim to expand the second term of the right-hand side of Eq. (2.29). Let us
denote the off-diagonal part of matrix A by C. We assume a proper discretization of A so
that matrix C is skew-symmetric. Based on Eq. (2.13) the discretization of the second term
is given by

⟨υ(n−1),Aυ̃(1)⟩Hn−1 =
1

2
⟨υ(n−1),Cυ̃(1)⟩Hn−1−1

2
⟨υ(n−1),CTυ̃(1)⟩Hn−1−1

2
⟨υ(n−1),

d η̃(0)
∼

dt
⊙υ̃(1)⟩Hn−1

Note that the last term follows directly from Eq. (2.28) which explains the irrelevance of
the averaging step associated with the tilde (see also Section 2.3). The sum of the first two
terms of the right-hand side reduces to

⟨υ(n−1),Cυ̃(1)⟩Hn−1 = ⟨υ(n−1),Cυ(n−1)⟩Hn−1 = 0

by virtue of the skew-symmetry property of C, so that

⟨υ(n−1),Aυ̃(1)⟩Hn−1 = −1

2
⟨υ(n−1),

d η̃(0)
∼

dt
⊙ υ̃(1)⟩Hn−1
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Then substitution of this result into Eq. (2.29) yields

dHkin

dt
= −⟨ϕ(n−1), g D̃0ζ̃(0)⟩Hn−1

For the second contribution, the discrete analogue of the rate of change of Hpot is given
by

dHpot

dt
= ⟨gζ̃(0), dν

(n)

dt
⟩H̃0

Eq. 2.22
↓
= −⟨gζ̃(0),Dn−1ϕ(n−1)⟩H̃0

Finally, the rate of change of the discrete Hamiltonian reads

dH
dt

=
dHkin

dt
+

dHpot

dt
= −⟨ϕ(n−1), g D̃0ζ̃(0)⟩Hn−1 − ⟨gζ̃(0),Dn−1ϕ(n−1)⟩H̃0

= −
[
⟨ϕ(n−1), g D̃0ζ̃(0)⟩Hn−1 + ⟨g

(
Dn−1

)T
ζ̃(0), ϕ(n−1)⟩H̃1

]
= −

[
⟨ϕ(n−1), g D̃0ζ̃(0)⟩Hn−1 − ⟨g D̃0ζ̃(0), ϕ(n−1)⟩H̃1

]
= 0

where we have use the fact that the discrete gradient is minus the adjoint of the discrete
divergence.

In the context of the discretization of incompressible Navier-Stokes equations, Verstappen
and Veldman [100] demonstrated that, in the absence of viscosity, discrete kinetic energy is
conserved if two fundamental requirements are fulfilled:

1. The discrete convective operator is skew-symmetric.

2. The antisymmetry relation div = −gradT is satisfied.

Based on the present analysis we can conclude that these requirements also apply to the
discretization of the inviscid shallow water equations. However, for the conservation of
discrete potential energy another essential condition must be added here, namely:

3. The mass flux at the cell face is defined as the product of the depth-averaged velocity
and the arithmetic average of the water depth, that is, Eq. (2.24).
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Chapter 3

Mimetic discretization of shallow
water equations on Cartesian meshes

3.1 Governing equations

The governing two-dimensional, primitive variable equations for the depth-averaged, non-
hydrostatic, wind-driven, rotating, free surface flow of an incompressible fluid over a rough
bed are given by

∂ζ

∂t
+∇ · q = 0 (3.1)

∂hu

∂t
+∇ · (q⊗ u) + gh∇ζ = −

∫ ζ

−d

∇p dz +∇ · (νh h∇u)− cf∥u∥u+ τw − f ẑ× hu (3.2)

with t the time and the coordinate directions x, y and z aligning in the east, north, and
vertical directions, respectively. In addition, ẑ is the unit vector pointing upwards. The
gradient operator ∇ used here operates in two dimensions and reads

∇ =

(
∂

∂x
,
∂

∂y

)T

The bed level d(x, y) is measured from the reference level z = 0 (positive downwards),
whereas ζ(x, y, t) is the surface elevation with respect to the reference level (positive
upwards). The water depth is given by h(x, y, t) = ζ(x, y, t) + d(x, y).

Furthermore, u = (u, v) is the flow velocity with the depth-averaged components
u(x, y, t) and v(x, y, t) along the x and y coordinates, respectively, q = hu is the mass flux,
and p(x, y, z, t) is the non-hydrostatic pressure (normalised by the water density). Bear in
mind the difference between the mass flux q and the mass circulation level hu in Eq. (3.2).

Finally, the physical model parameters used here are the horizontal eddy viscosity
νh(x, y, t), the dimensionless bottom friction coefficient cf (x, y, t), the wind shear stress at
free surface τw, the Coriolis parameter f = 2Ω sin ϕ with Ω the angular speed of Earth’s
rotation and ϕ the geographic latitude, and the gravitational acceleration g.
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The wind shear stress is parametrized as follows

τw = cd
ρair

ρ
∥u10∥u10

where cd is the wind drag coefficient, ρair and ρ are the air and water densities, respectively,
and u10 is the wind speed at 10 m above the free surface.

The shallow water equations (3.1) and (3.2) are derived from integrating the mass
conservation and the momentum balance over the depth, respectively, whereas the total
pressure is decomposed into its hydrostatic and non-hydrostatic components (see, e.g.
[14, 26, 116]). In the case of a hydrostatic pressure distribution, i.e. p ≡ 0, these equations
can be reformulated as a set of nonlinear hyperbolic equations, and may thus generate
discontinuous solutions featuring shock waves [49]. Such solutions can readily be understood
as weak solutions in the variational context.

Using Leibniz’ rule, a conservative expression for the gradient of non-hydrostatic pressure
is obtained [85] ∫ ζ

−d

∇p dz =
1

2
∇ (hpb)− pb∇d

with pb the non-hydrostatic pressure at the bed. This pressure is associated with the vertical
motion that is governed by the following equation

∂ws

∂t
=

2pb
h

− ∂wb

∂t

where ws is the velocity in the z−direction at the free surface. This equation is derived
using the Keller-box method to further improve the dispersive behaviour of the waves
[85, 116]. The vertical velocity at the bed wb can be found by means of the following
kinematic condition

wb = −u · ∇d at z = −d

Finally, the system of equations is complete with the following equation

∇ · u+
ws − wb

h
= 0 (3.3)

which ensures conservation of local mass.



Chapter 4

Mimetic discretization of shallow
water equations on curvilinear grids

This chapter is under preparation.
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Chapter 5

Mimetic discretization of shallow
water equations on triangular meshes

5.1 Introduction

This chapter presents the development of the discretization method for the shallow water
equations on unstructured triangular meshes. The approach to follow is broadly in line
with the one suggested by [53, 82, 73] and [92] in which a transparent separation between
the processes of exact discretization and approximation is established.

By exact discretization we mean the process of translating a system with an infinite
number of degrees of freedom, such as Eqs. (3.1) and (3.2), into a finite system of equations
and unknowns. This resulting system is exact because no approximations have been
introduced yet. However, it is underdetermined and its closure is commonly obtained by
the addition of a number of constitutive relations between the different degrees of freedom,
which involve some sort of approximation. Both the exact discretization and the process of
approximation are addressed separately in detail below.

A key element in the present approach is the primal-dual mesh framework. A classic
example is the Delaunay triangulation (primal mesh) and the associated Voronoi tessellation
(dual mesh). A successful numerical method that exploits the orthogonality properties of
the Delaunay-Voronoi mesh is the covolume discretization of [63, 64, 65, 66] and [28, 15]
and later popularized by [70]. Additionally, it has attracted great attention of various
researchers and engineers in the last two decades (see, e.g. [26, 88, 43, 39, 40, 31] and
[111]).

The covolume method is basically an extension of the Cartesian staggered C-grid
technique to orthogonal unstructured triangular and tetrahedral meshes and uses the
normal velocity component as the primary unknown. The covolume method typically
yields convergence of second order for regular meshes and first order otherwise [64, 70].
Another attractive feature of the covolume discretization is the local and global conservation
properties as first shown in [70]. In the context of the incompressible Navier-Stokes
equations, this discretization conserves mass exactly, but also (vector) derived quantities
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such as momentum, kinetic energy and vorticity, both globally and locally [72]. In this
sense, the covolume method belongs to the class of mimetic discretization methods.

This chapter presents the discretization method that is similar to the covolume method
(see also [111]). The plan of this chapter is as follows. In Section 5.2 the discretization
of a physical domain and the main characteristics of the associated computational mesh
are described. Section 5.3 discuss the metrics of the mesh which is an essential part of
the discretization. In Section 5.4 the exact discretization of the inviscid shallow water
equations on orthogonal triangular meshes by using the concepts of algebraic topology is
outlined. Section 5.5 deals with various interpolation schemes that are required to close the
exact semi-discrete system of equations. Section 5.6 is concerned with providing a detailed
summary of the present method. Also, some statements are made about the accuracy of the
method. Finally, in Section 5.7 the discrete conservation properties of the present method
are demonstrated by considering the discrete equation that conserves mass exactly and
the conservation of momentum and (mechanical) energy via certain combinations of the
discrete equations.

5.2 Domain discretization

Let Ω ⊂ R2 represents a simply connected polygonal domain with regular boundary ∂Ω.
This two-dimensional domain is covered by a mesh defined as a finite collection of non-empty
disjoint triangles. Each edge of a triangular cell is either uniquely shared by two adjacent
cells or belongs to ∂Ω.

For each triangle vertex a polygon is constructed that constitutes a partition of Ω
designated as a dual mesh. The common choices are the circumcentric dual and the
barycentric dual [73, 92, 55, 6]. The former dual mesh is constructed by joining the
cell circumcenters and the latter is formed by connecting the cell centroids and the edge
midpoints. Because of the mutual orthogonality between the primal and dual meshes that
allows for stable discretizations, we adopt the circumentric dual in the present method. The
motivation for this choice is also discussed in Section 2.5.8. However, a suitable triangular
mesh should be well centered, meaning that at least a large proportion of the triangular
cells contain their circumcenter, so that inaccurate results can be avoided. An example of a
triangle that is not well centered is demonstrated on page 44.

The process of discretization requires the location on the computational mesh where
one properly defines the physical variables. This is usually determined by the properties
of a nonuniform medium, through which the waves (surface waves, internal waves, etc.)
propagate, that affect the local flow conditions, either slowly or rapidly. In particular, the
bathymetry can change rapidly, especially in the shallow water regime. As such, the bed
level is assumed to be piecewise constant on the mesh cells with the discontinuity at the
cell faces. For this reason, the computational mesh is chosen as the primal mesh where its
boundary faces are aligned with the domain boundaries and internal faces are aligned with
bed discontinuities.

Let indices c, f , e and v enumerate cells, faces, edges and vertices, respectively, of the
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primal (computational) mesh. Those of the dual mesh are indicated by a tilde over the
corresponding indices. Furthermore, let k be the dimension of a mesh element (from a
vertex having dimension 0 to a cell having dimension 3). Although there is no difference
between the edge and the face of a 2D mesh, their distinction will nevertheless clarify the
derivations to be presented below while directly applicable to three dimensions.

There is a bijective map (or duality pairing) between the different mesh elements of
primal and dual meshes. The dual of a primal cell c is the vertex of the dual mesh ṽ, the
dual of a primal face f is the edge of the dual mesh ẽ, the dual of a primal edge e is the
face of the dual mesh f̃ , and the dual of a primal vertex v is the cell of the dual mesh c̃.
See Section 2.5.6 for further details. However, only the primal elements c and f and their
respective duals ṽ and ẽ suffice for the discretization set out below.

5.3 Metrics

The duality between primal and dual mesh objects requires the use of metrics. We denote
Ac the area of cell c, Sf the length of face f (or the face area in 3D), and le the length of
edge e. Furthermore, we also use subscripts to indicate the center of gravity (or the centroid)
of a mesh element. For example, index c refers to the primal cell centroid and index ẽ to the
dual edge midpoint. Note, however, that there is, in general, no correspondence between
the centroid of a primal mesh element and that of its dual one. For instance, the centroid
of the primal face does not always coincide with the dual edge center and also the primal
cell center and the dual vertex position are not always the same. They would be, however,
if the triangular mesh is regular or uniform.

For the development of the discretization presented here, the main focus is on the dual
edge ẽ as depicted in the right panel of Figure 2.8. Between the vertices ṽl and ṽr of this
edge is the intersection with the primal face f . This intersection is the centroid of face f
and is located at position xf . Let furthermore xi be the location of ṽi. Note that xi also
refers to the cell circumcenters of the computational mesh. Next, we define the position
vector rfi from point xi to point xf ,

rfi = xf − xi

and we denote its length by lfi = ∥rfi∥. Owing to the orthogonality, we have

rfl
lfl

= −rfr
lfr

= tẽ

where tẽ is the unit tangent to edge ẽ pointing from xl to xr. Note that the length of edge
ẽ can be computed as lẽ = lfl + lfr. We can also regard this length as the distance between
the two neighboring cell circumcenters with the face located in between them. Because of
the one-to-one correspondence between the dual edges and the primal faces we denote by
∆sf this distance. In addition, with ∆sfc we mean the distance from cell face midpoint f to
cell circumcenter c.
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5.4 Exact discretization

To construct discretizations of the differential operators an orientation to the mesh elements
must be provided first. The choice of orientation is arbitrary. Let us choose the primal
mesh to be outer oriented. With reference to the left panel of Figure 2.8, the right-hand
rule is adopted to specify the outer orientation of faces in R2, the unit normal to face f ,
denoted nf , is oriented to the right/east or upwards/north. Note that its direction can
either be inward or outward with respect to cell c. Since the faces are straight the normal
vector is constant. Next, nc,f denotes the unit vector pointing out of cell c and normal to
face f . The mutual orientation of the unique normal nf and the outward normal nc,f at
face f of cell c is indicated by sc,f = nf · nc,f = ±1. Note that we also have nf = sc,f nc,f

and nc,f = sc,f nf . Finally, the outer orientation of cell c is determined by its faces with
outward normals.

As was observed in Section 2.4, scalar and vector fields are essentially local functions
and thus cannot be associated with a finite region of space. Instead, their integrals over a
set of k-dimensional mesh objects are employed as degrees of freedom known as discrete
k−forms. In what follows, discrete forms are denoted by lower case Greek letters.

On the condition that the water depth h(x, t) is piecewise continuous on the primal
mesh with the discontinuities at the faces and the normal component of mass flux q(x, t)
is continuous across the faces of the primal mesh, their respective discrete forms are then
given by

ν(n)
c (t) =

∫
c

h(x, t)dA (5.1)

representing the volume of primal cell c (dimension n), and

ϕ
(n−1)
f (t) =

∫
f

q(x, t) · nf dS (5.2)

defining the integral of the normal component of the mass flux over face f (dimension
n− 1). Note that the mass flux tangent to the primal face can exhibit a discontinuity at
the face.

Since the boundary operator acting on cell c is given by (see Eq. (2.15) and Figure 2.8)

∂n c = f1 − f2 − f3

the associated coboundary operator then reads

Dn−1 =
[
+1 −1 −1

]
This incidence matrix locally relates three primal face values to one primal cell value. Note
that this matrix only depends on the mesh topology and is thus coordinate invariant. For
example, the action of Dn−1 on ϕ(n−1) = [ϕ

(n−1)
f1

ϕ
(n−1)
f2

ϕ
(n−1)
f3

]T is given by

Dn−1ϕ(n−1) = ϕ
(n−1)
f1

− ϕ
(n−1)
f2

− ϕ
(n−1)
f3
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which represents the divergence of the mass flux at the discrete level. Hence, continuity of
volume in cell c reads

d ν
(n)
c (t)

dt
= −ϕ

(n−1)
f1

(t) + ϕ
(n−1)
f2

(t) + ϕ
(n−1)
f3

(t)

or
d ν

(n)
c

dt
= −

∑
f∈∂c

sc,f ϕ
(n−1)
f (5.3)

We proceed with the discretization on the dual mesh. This mesh is inner oriented and
the orientation of dual edge ẽ is depicted in the right panel of Figure 2.8. Furthermore,
each dual vertex ṽi is oriented as a sink by default, so that ∂̃1ẽ = ṽr − ṽl. Hence, we have

D̃0 =
[
−1 +1

]
which locally converts two dual nodal quantities into one dual edge quantity. This cobound-
ary operator is the discrete, coordinate-free implementation of grad. Note here that

seemingly the antisymmetry relation D̃0 = − (Dn−1)
T
does not hold, but this is only the

case when we consider the entire mesh (Recall that the dual mesh is not a cell complex; see
also Section 2.6.2).

Next, the following discrete 0−forms defined on an inner-oriented dual mesh are con-
sidered in the present method

η̃
(0)
ṽi
(t) = hi(t) (5.4)

and

ζ̃
(0)
ṽi

(t) = hi(t)− di = ζi(t)

representing the water depth and the water level, respectively, at vertex ṽi. Here, the
bed level di is assigned to vertex i of the dual mesh, which is the circumcenter of the
computational cells. In addition, integration of the depth-averaged velocity u and the
depth-integrated velocity hu along edge ẽ are given as dual 1−forms, as follows

υ̃
(1)
ẽ (t) =

∫
ẽ

u(x, t) · tẽ dl (5.5)

and

γ̃
(1)
ẽ (t) =

∫
ẽ

h(x, t)u(x, t) · tẽ dl (5.6)

respectively. Note that the sign of υ̃
(1)
ẽ , and also of γ̃

(1)
ẽ , indicates the flow direction.

With the above definitions, we can formulate the analogous expression to the flow
equation (2.23) for each dual edge ẽ, as follows

dγ
(1)
ẽ (t)

dt
+ α̃

(1)
ẽ (t) + gη̃(0)ẽ

(
ζ̃
(0)
ṽr

(t)− ζ̃
(0)
ṽl

(t)
)
= 0 (5.7)
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with

η̃(0)ẽ =
1

2

(
η̃
(0)
ṽl

+ η̃
(0)
ṽr

)
Furthermore, α̃

(1)
ẽ represents the line integral of a nonlocal vector a that acts as a proxy for

∇ · (q⊗ u) and is given by

α̃
(1)
ẽ (t) =

∫
ẽ

a(x, t) · tẽ dl (5.8)

In the perspective of rapidly varied flows, Eq. (5.7) is conceived as integrating along a path
between the upstream and downstream points where a hydraulic jump may form at some
location between these two endpoints, depending upon the upstream state [112]. The term

α̃
(1)
ẽ plays a key role in this. A mimetic discretization of this term is discussed in the section

below.

Right now we have one semi-disrete volume equation in each cell of the primal mesh,
Eq. (5.3), and one semi-discrete flow equation at each edge of the dual mesh, Eq. (5.7), but

six discrete k−forms at various locations on these meshes, namely, ν
(n)
c , ϕ

(n−1)
f , η̃

(0)
ṽi
, υ̃

(1)
ẽ ,

γ̃
(1)
ẽ and α̃

(1)
ẽ . Closure of this system of equations requires to relate these integral variables

to each other and subsequently to evaluate them numerically. These aspects are presented
in more detail in the next section.

5.5 Interpolation and numerical integration

In this section we describe discrete operators by means of interpolation as they are invoked
to complete the system of equations (5.3) and (5.7). These operators require the notion of
metric and also introduce a numerical error in the present method. A distinction is made
between operators that map one discrete form on the dual mesh to another discrete form
on the primal mesh, and operators that perform an interpolation on the dual edge only.
The first type of operators is known as discrete Hodge operators and the second type is
called the edge-based interpolations. We will treat them separately. Also, the numerical
evaluation of discrete forms by quadrature is provided.

5.5.1 Dual-to-primal interpolation

Since we have chosen for the inner-oriented scheme, the outer forms need to be replaced
by the inner forms. This will be done using the circumcentric dual Hodge (diagonal)
matrices. Basically, a dual k−form given on the dual k−cell is interpolated on the primal
(n− k)−cell to find an approximation of its corresponding primal (n− k)−form. Referring
to Sections 2.6.2 and 2.5.7 (including Figure 2.4), we have the following maps from the dual
vertex to the primal cell

ν(n)
c = Ac η̃

(0)
ṽi

(5.9)
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and from the dual edge to the primal face

υ
(n−1)
f =

Sf

lẽ
υ̃
(1)
ẽ (5.10)

Both mappings are the result of the circumcentric dual mesh which is constructed by
connecting the primal cell circumcenters.

Let us rewrite the transform (5.10) as follows

υ
(n−1)
f

Sf

=
υ̃
(1)
ẽ

lẽ

The left-hand side represents the average of the normal flux vector at the center of the
primal face f while the right-hand side describes the average of the tangential velocity
vector at the center of the dual edge ẽ. Both midpoint averaging are second order accurate.
Since the circumcentric dual mesh is employed, both these vectors are pointing in the same
direction. As a consequence, υ̃

(1)
ẽ /lẽ is considered as an interpolated value for υ

(n−1)
f /Sf (or

vice versa). In general, the face center and the edge center are not the same so that the
dual-edge-to-primal-face interpolation (5.10) is first order accurate. However, when the
triangular mesh is regular or uniform, it becomes second order accurate.

In a similar vein, the dual-vertex-to-primal-cell interpolation formula (5.9) is first order
accurate in case that the centroid of the primal cell does not coincide with the position of
the dual vertex, otherwise it is second order accurate. However, we have assumed that the
water depth is constant within the cell implying that the interpolation remains first order
accurate.

Since every triangular mesh has a Voronoi dual, implying the presence of cell circumcen-
ters, the circumcentric dual interpolation can in principle always be applied. Yet, it may
become inaccurate when the mesh is strongly distorted. In particular, interpolation (5.10)
becomes indefinite or incorrect when the circumcenter is not located within the cell itself: lẽ
can be zero or negative, respectively. So, in practice, it is desirable (though not necessary)
to use a well-centered triangular mesh, such that most of the cell circumcenters are close to
the cell centroids.

5.5.2 Discrete prognostic variables

The primary unknowns (or prognostic variables) of the shallow water equations (2.1) and
(2.2) are the depth-averaged flow velocity u and the water depth h. The discrete unknowns
of the present inner-oriented discretization method are defined based on the discrete inner
k−forms. These integral variables can be evaluated numerically by an m-point Gauss
quadrature rule with m the number of degrees of freedom per mesh element. Since the
discretization method is designed as a first order method we will commonly use the midpoint
rule (m = 1) to approximate the integrals, with some exceptions.
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Let us first consider the depth-averaged circulation velocity on dual edges as given by
Eq. (5.5). This line integral is approximated as

υ̃
(1)
ẽ =

∫
ẽ

u · tẽ dl = uẽ lẽ (5.11)

where uẽ is the depth-averaged edge-tangential velocity assigned to the center of edge ẽ
and is designated to be the first prognostic variable of the present method.

On a primal face we have the following (n− 1)−form given

υ
(n−1)
f =

∫
f

u · nf dS

which represents the depth-averaged mass flux velocity integrated over face f (see Sec-
tion 2.6.2). Then employing the midpoint rule to calculate this integral yields

υ
(n−1)
f = uf Sf (5.12)

with uf the depth-averaged face normal velocity at face center f . From Eqs. (5.10) and
(5.11) it follows that

Sf uf = υ
(n−1)
f =

Sf

lẽ
υ̃
(1)
ẽ = Sf uẽ

so that uf = uẽ which is a first order approximation. Again, when the mesh is regular
then the midpoint of the dual edge and the center of the primal face are identical and
second order accuracy is obtained by this approximation. In practice, this means that these
velocity unknowns can be interchanged without affecting the accuracy of our first order
discretization method.

The second prognostic variable used in the discretization method is derived from the
water depth located at dual vertices. This inner 0−form is given by Eq. (5.4). The water
depth hi is thus located at cell circumcenter i. The present method assumes that the bed
level d is piecewise constant on the mesh cells. We will also apply this assumption to the
water depth. This is a first order approximation.

On the other hand, the integral of the water depth over the primal cell, that is, Eq. (5.1),
is approximately evaluated in the following way

ν(n)
c = hcAc (5.13)

where hc is the cell average water depth at the centroid of cell c. From Eq. (5.9) we have that
the indices i (for circumcenter) and c (for centroid) for the water depth can be interchanged,
that is, hc = hi.

5.5.3 Edge-based interpolation

Part of the discretization concerns the calculation of the mass flux as given by Eq. (2.24)
and the mass circulation velocity given by Eq. (2.25). They are expressed here as

ϕ
(n−1)
f = υ

(n−1)
f η̃(0)ẽ (5.14)
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in which the mass flux is evaluated over the face f , and

γ̃
(1)
ẽ = η̃(0)

∼
ẽ υ̃

(1)
ẽ (5.15)

whereby the velocity circulation is computed along the edge ẽ. (Bear in mind that these

are the integral variables.) In both cases an average quantity is involved, namely, η̃(0)ẽ and

η̃(0)
∼

ẽ while the corresponding interpolations are performed entirely on the dual edge.
Let us start with the arithmetic (or simple) average. It is calculated as a point value in

the following manner

η̃(0)ẽ =
1

2

(
η̃
(0)
ṽl

+ η̃
(0)
ṽr

)
=

1

2
(hl + hr) = hẽ (5.16)

Note that this interpolation is mesh independent as it should be because that is essential
for energy conservation, and in turn numerical stability. See Section 2.6.2 for details.

Next, the zero-form η̃(0)
∼

ẽ embodies the average volume or height that is linked with the
mass circulation velocity. It expresses the weighted average of the water depth between
two endpoints of the the dual edge ẽ, namely, ṽl and ṽr. We first approximate the discrete
1−form γ̃

(1)
ẽ on the dual edge ẽ, Eq. (5.6). With reference to Section 5.3, integration is

carried out using the endpoint values in the following way [71]

γ̃
(1)
ẽ =

∫
ẽ

hu · tẽ dl ≈ hlul · rfl − hrur · rfr = (lfl hl ul + lfr hr ur) · tẽ (5.17)

resulting in a first order approximation for the depth-integrated velocity. Then we assume
that the depth-averaged velocity uẽ is constant along the dual edge so that ul·tẽ = ur ·tẽ = uẽ.
This first order approximation yields

γ̃
(1)
ẽ = (lfl hl + lfr hr)uẽ = lẽ h̃f uẽ (5.18)

with h̃f the weighted average water depth as defined by

h̃f =
lfl
lẽ

hl +
lfr
lẽ

hr

Because of Eq. (5.11) while comparing Eq. (5.15) to Eq. (5.18), we conclude that η̃(0)
∼

ẽ = h̃f .
This point value is located at face f . (Remember that this is not necessarily the edge
center.) Alternatively, it can be expressed in terms of the distances between face and
neighboring cell circumenters,

h̃f =
∆sfl
∆sf

hl +
∆sfr
∆sf

hr (5.19)

What follows is the proof that the above construction of h̃f preserves the volume of
entire domain Ω with variable water height h. Since all the computational cells together
form the domain, the total volume is expressed as∑

c∈Ω

Ac hc
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First, a rhombus is constructed by combining two isosceles triangles on either side of a
face. Each of these subtriangles is made up of three vertices, namely, the cell circumcenter
and the two endpoints of the face. So, the rhombus has two diagonals of which one is
the face f and the other is the edge ẽ. Its area is given by 1/2Sf lẽ = 1/2Sf ∆sf . Next, we
consider a rhombic prism where its bottom (bed) and top (free surface) are rhombuses.
Since the heights on each side of the face may not be equal, we insert the average height of
this prism at the face which reads h̃f . Hence, the effective volume of the rhombic prism
equals 1/2Sf ∆sf h̃f .

Next, the volume of water in the entire domain Ω is obtained by the sum of nonoverlap-
ping prisms over all the faces, as follows

1

2

∑
f∈Ω

Sf ∆sf h̃f =
1

2

∑
f∈Ω

Sf (∆sfl hl + ∆sfr hr) =
∑
c∈Ω

hc

∑
f∈∂c

1

2
∆sfc Sf =

∑
c∈Ω

hcAc

where the second equality displays the conversion of the sum over the faces into the sum
over the cells.

The averaging operator (5.19) is known as the volume-weighted averaging and is not the
usual linear interpolation [29, 96]. On uniform grids it is formally second order accurate
and becomes first order on arbitrary meshes. However, in their paper [29] the authors
demonstrated that the volume averaging operator is second order accurate on meshes that
are sufficiently smooth.

5.5.4 Mimetic discretization of advection term

This section presents the construction of a discrete version of the divergence term ∇·(q⊗ u).
In particular, we aim to approximate the line integral (5.8) that contributes to the flow
equation (5.7). In terms of discrete forms, this line integral is represented as a 1−form on

the dual edge ẽ, expressed as α̃
(1)
ẽ . The discretization of this nonlinear term on simplicial

meshes is not straightforward and usually requires the use of coordinate invariant operators
including the Lie derivative. Further discussion on this topic can be found in, e.g. [22, 60, 46]
and [27]. Instead, the approach developed by Perot [71, 73, 74] is adopted, which is not
based on the formalism of algebraic topology.

Since the momentum flux tensor q⊗u can be naturally defined at cell faces, the obvious
way to compute the divergence term is to integrate it over the cell. We define the vector ac
as the average of the divergence term over cell c,

ac =
1

Ac

∫
c

∇ · (q⊗ u) dA =
1

Ac

∮
∂c

(q · nc,f ) u dS =
1

Ac

∑
f∈∂c

∫
f

(q · nc,f ) u dS

Assume that the divergence of the tensor field q⊗ u is constant in a triangular cell so that
both the mass flux q and the depth-averaged velocity u vary linearly within the cell while
constant on cell faces. (Bear in mind that the water depth is cell-wise constant.) Then the
integral of the momentum flux over the face can be calculated exactly as follows∫

f

(q · nc,f ) u dS = (qf · nc,f ) uf Sf = sc,f (qf · nf ) uf Sf = sc,f ϕ
(n−1)
f uf
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with (see Eq. (5.2))

ϕ
(n−1)
f =

∫
f

q · nf dS = (qf · nf )Sf (5.20)

the second order face-integrated mass flux at the face centroid f and uf the transported
flow velocity vector at the center of gravity of face f . Hence, the nonvolumetric advection
vector ac at each cell center is approximated as

ac =
1

Ac

∑
f∈∂c

sc,f ϕ
(n−1)
f uf (5.21)

and is first order accurate because of the above assumption.
Observe that the cell-based advection vector is constituted by the sum of face fluxes. It

turns out, as we will see shortly, that this is required by conservation of momentum. See
Section 5.7.2 for further details.

As last step, we continue by evaluating the discrete 1−form α̃
(1)
ẽ on the dual edge ẽ

with the two neighboring cell circumcenters as endpoints. The corresponding line integral
is approximated by utilizing the endpoint values as

α̃
(1)
ẽ =

∫
ẽ

a · tẽ dl ≈ al · rfl − ar · rfr = (lfl al + lfr ar) · tẽ (5.22)

This integration is first order accurate regardless of any mesh. Note the similarity with
the volume-weighted average formula (5.17). This completes the construction of the term
∇ · (q⊗ u).

Before we conclude this section, we must note that the depth-averaged velocity vector
uf in Eq. (5.21) still needs to be determined. If we were to calculate this vector at the
face centroid itself, we would only need to find its tangential component at the same
point. However, the tangent velocity can display a discontinuity at the face. On the other
hand, we should be reminded that the off-diagonal part of the discretization matrix of
∇ · (q⊗ u) must be skew-symmetric in order to construct discrete energy conservation
(for the discussion, see Sections 2.3 and 2.6.2 but also Section 5.7.3). For this reason, let
us consider two adjacent cells l and r sharing the face f . To obtain a skew-symmetric
contribution to the advection term we must use the following interpolation

uf =
1

2
(ul + ur)

where uc is the depth-averaged velocity vector at cell center c. Like hẽ (see Eq. (5.16)),
this metric-independent averaging also turns out to be a necessary condition for energy
conservation. We will discuss this further later.

We end this section by presenting the final expression for the advection vector,

ac =
1

Ac

∑
f∈∂c

sc,f ϕ
(n−1)
f uf (5.23)

and by noting that a reconstruction is needed to obtain the cell-based velocity vector uc.
This is covered in the next section.
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5.5.5 Mimetic reconstruction of vector fields

Vectors are not a natural ingredient within the framework of algebraic topology. They
are, however, required for many purposes like computing the advection operator and the
Coriolis force, both involving a velocity vector. This section provides the derivation of a
vector reconstruction that approximates the vector field in the cell center by using the face
normal components.

A reconstruction of two cell vector components from the face normals is always possible
as long as each 2D computational cell has at least two nonparallel faces. However, it is
not unique. Various reconstruction methods can be found in the literature of which the
common ones are the least squares reconstruction of vector fields [65, 78, 101, 69], Whitney
forms [105, 11] and the method of Perot using Gauss’s divergence theorem [70, 74].

Least squares approximations typically reconstruct the cell-based vector through the
polynomial interpolation from the vector components at the surrounding cell faces. Though
these algorithms provide full control over the accuracy of their reconstructions, they are
rather involved and computationally demanded [69].

Whitney forms are widely used in computational electromagnetism and can also be
applied to construct Hodge star matrices on simplicial meshes [55].

The interpolation method of Perot is a rather intuitive approach and makes no reference
to algebraic topology. However, as we will see later, this method is mimetic in the sense
that it conserves local kinetic energy (see Section 5.7.3). Another advantage is that it can
be applied to arbitrary polygons. For these reasons, we adopt the interpolation method as
described in [74].

The starting point is an arbitrary two-dimensional vector field u and a 2DH mesh with
polygonal cells that are all cyclic (e.g. triangular, rectangles). Furthermore, the projection
of this vector on the directions normal to a cell face f is specified, that is, uf · nf = uf .
(Recall that the normal vector components are well defined on the polygonal faces.) The
aim is to reconstruct a cell-centered vector uc out of the face normals uf .

We do this first by considering the volume integral of the divergence of the tensor field
u⊗ r over a cell and subsequently applying the divergence theorem,∫

c

∇ · (u⊗ r) dA =

∮
∂c

(u · nc,f ) r dS =
∑
f∈∂c

∫
f

(u · nc,f ) r dS

where r = x− xc is the position vector. The position xc might be the center of gravity or
the circumcenter. Expanding the first term, we have∫

c

r (∇ · u) dA+

∫
c

(u · ∇) rdA =
∑
f∈∂c

∫
f

(u · nc,f ) r dS

Next, we assume that vector u is constant over cell c, so that ∇ · u = 0. By observing
that (u · ∇) r = u and subsequently using the single-point Gauss quadrature to calculate
both the volume and face integrals, we obtain

uc Ac =
∑
f∈∂c

sc,f (uf · nf ) rfc Sf =
∑
f∈∂c

sc,f uf Sf rfc (5.24)
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with rfc = xf − xc the vector from the cell center to the face centroid.
Now let us take the cell center as the circumcenter, then we have rfc = ∆sfc nc,f . We

obtain the final expression for the interpolation of the cell vector uc from the face normal
values uf ,

uc =
1

Ac

∑
f∈∂c

Sf ∆sfc uf nf (5.25)

This interpolation is first order accurate because of the assumed constancy of u.
What follows below is the derivation of two geometric identities that we will need later

on. Recall Eq. (5.24). We have

Ac uc =
∑
f∈∂c

sc,f Sf (uf · nf ) rfc =
∑
f∈∂c

Sf rfc
(
nT
c,f uf

)
Now let the vector u be a constant, say u = (1, 0)T. Then inserting yields

(Ac, 0)
T =

(∑
f∈∂c

Sf rfc ⊗ nc,f

)
(1, 0)T

In the same way we have

(0, Ac)
T =

(∑
f∈∂c

Sf rfc ⊗ nc,f

)
(0, 1)T

Thus, we have our first geometric identity

AcI =
∑
f∈∂c

Sf rfc ⊗ nc,f

We can also take the transpose of this identity to get

AcI =
∑
f∈∂c

Sf nc,f ⊗ rfc (5.26)

The second geometric identity to be used is obtained in the following way. With a
constant vector u we have the following exact expression

0 =

∫
c

∇ · u dA =
∑
f∈∂c

∫
f

(u · nc,f ) dS = u ·
∑
f∈∂c

∫
f

nc,f dS

Assume that the cell faces are straight, then we obtain the identity∑
f∈∂c

nc,fSf = 0 (5.27)
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5.6 Mimetic discretization of the shallow water equa-

tions on orthogonal triangular meshes

5.6.1 Discrete shallow water equations

The previous sections elaborated on the exact discretization of the inviscid shallow water
equations (Section 5.4) along with the interpolation approximations (Section 5.5) which
yield a semi-discrete system of equations. This section presents a detailed summary of the
numerical methodology that is part of the SWASH software package.

We start with a semi-discretization of the continuity equation (2.1). From Eqs. (5.3)
and (5.13) we have the final discrete form of this equation,

dhc

dt
+

1

Ac

∑
f∈∂c

sc,f ϕ
(n−1)
f = 0 (5.28)

This cell-based discretization is generally first order accurate. It must be noted that
sc,f ϕ

(n−1)
f is negative if qf directs into cell c, otherwise, it is positive. Using Eqs. (5.12),

(5.14) and (5.16), the mass flux is calculated as follows

ϕ
(n−1)
f = υ

(n−1)
f η̃(0)ẽ = Sf hẽ uf = Sf hf uf (5.29)

Here, for convenience, we can write hf for hẽ to emphasize the association with the face.
Hence,

hf =
1

2
(hl + hr) (5.30)

Let us proceed with a semi-discrete version of the flow equation (2.2). Substituting
Eqs. (5.16), (5.18) and (5.22) into Eq. (5.7), the final first order edge-based discretization
of this equation is obtained

lẽ
d h̃f uẽ

dt
+ (lfl al + lfr ar) · tẽ + g hẽ (ζr − ζl) = 0 (5.31)

with ζi the water level located at dual vertex i (or cell circumcenter). Furthermore, h̃f is
given by Eq. (5.19) and ai by Eq. (5.23).

Alternatively, Eq. (5.31) can be expressed in terms of the metrics with respect to the
cell faces of the orthogonal mesh, as follows

∆sf
d h̃f uf

dt
+ (∆sfl al + ∆sfr ar) · nf + g hf (ζr − ζl) = 0 (5.32)

where it is noticed that uf is the primary unknown and that both vectors tẽ and nf are
pointing in the same direction, that is, tẽ · nf = 1 (see also Figure 2.8).

Eqs. (5.28), (5.29) and (5.32) are the discretizations of the inviscid shallow water
equations (2.1) and (2.2) and lay the foundation for the present orthogonal unstructured



Mimetic discretization of shallow water equations on triangular meshes 73

staggered mesh discretization method. This method is also described in [26, 88, 43, 39, 40]
and [111]. The underlying approach is best known for the work of Perot [70] and also has its
origins in the covolume method of Nicolaides [63]. An important limitation of this method,
however, is that the triangular mesh should be orthogonal and preferably well centered.
Note that this limitation is not essential as the method can in principle be extended to
non-orthogonal grids, see, e.g. [71, 6].

The present method belongs to the family of staggered C-grid discretizations and they
are renowned for their physical accuracy and stability due to their symmetry properties
such as the discrete divergence is the negative transpose of the discrete gradient and the
discrete curl of a discrete gradient is zero and also their conservation properties, namely,
conservation of mass, momentum and energy. Another attractive property of such schemes
is that they are free of stationary spurious modes. (For further explanation, see Chapter 7.)

5.6.2 Accuracy

The present mimetic staggered C-grid scheme is formally first order accurate on orthogonal
triangular meshes because the primal face centroids do not necessarily coincide with the dual
edge midpoints. The metric-dependent interpolations discussed earlier are based on this
specific feature. Also, the interpolation of a vector quantity from its face components is first
order accurate. The exception are the uniform triangular meshes where these interpolations
display second order accuracy just like the classical Cartesian staggered finite difference
schemes.

According to Manteuffel and White [52], the local order of (Taylor series) truncation
error of a scheme for varying meshes only provides a lower bound for the global truncation
error and may thus not reflect the actual error of the scheme. This is especially true
for a well-behaved scheme like the mimetic one. This means in practice that such a
scheme tends to converge with a higher rate on slowly nonuniform grids (having low mesh
stretching rates) than predicted based on its local truncation error. This phenomenon
is known as supraconvergence and has been widely analysed in the literature, see e.g.
[52, 94, 103, 98, 100, 32] and [93].

Nearly second order convergence on reasonably smooth grids is indeed observed for
unstructured staggered mesh schemes since the first order errors are routinely very small
[108, 74, 73]. (These errors will be dominant when these grids are extremely refined.)
Furthermore, the convergence study described in [6] has revealed that the mesh convergence
rates of staggered schemes are not strongly influenced by the Hodge star interpolations and
for that reason these schemes show better convergence behavior than expected. Another
example is given in [32] in which it is pointed out that misalignments between the face and
cell centroids have usually no adverse effect on the discretization error.

But there are other considerations for using low order mimetic discretizations. A naive
increase of the order of truncation of a numerical scheme is often not sufficient to enhance
the quality of the results, in particular for nonlinear flow problems exhibiting a wide range
of spatial scales. Other properties such as preserving symmetries and conservation of the
PDEs in a discrete sense need to be considered.
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Mimetic discretizations typically do not minimize the local truncation error on nonuni-
form grids, unlike the traditional discretization methods, but are designed to respect the
conservation and symmetry properties of the underlying PDEs at the discrete level and,
in turn, to minimize the aliasing error due to quadratic nonlinearities. This also concerns
the mimetic interpolations discussed in Section 5.5 as opposed to linear (or high order
Lagrangian) interpolations.

Another feature of low order schemes is that they are better protected against aliasing
errors than high order central schemes regardless of whether they are mimetic or not [44].
Especially the latter ones suffer from the unbounded growth of the aliased energy at high
wave numbers and are thus required to apply some form of smoothing or regularization
to prevent the numerical solution from being unstable, which in practice can be very
challenging to achieve [37]. This justifies the use of low order mimetic schemes instead of
order-of-truncation-optimized (often non-mimetic) schemes, especially for under-resolved
nonlinear problems [99, 100].

In general, higher accuracy can be achieved by adding more degrees of freedom to the
discretization. This is usually done by decreasing the mesh size (h-refinement), particularly
in regions giving the largest contribution to the solution error, or by increasing polynomial
order (p-refinement). In the latter case, the computational stencil is kept small, albeit
with a larger number of unknowns per mesh element. Polynomial reconstruction typically
requires the solution of a least squares problem.

Another approach to enhance the order of accuracy of the discussed discretizations while
preserving their conservation properties is by means of the Richardson extrapolation. See
the works of Morinishi et al. [58] and Verstappen and Veldman [100] for details.

It is our view that the present first order discretization combined with the h-refinement
is preferred since it requires low memory storage, uses compact discretizations, and takes
full advantage of the built-in mimetic properties while minimizing aliasing errors. The latter
also ensures that the use of dissipative filters or artificial viscosity is kept to a minimum.
Finally, the present method is better suited to capture small-scale features such as flow
discontinuities.

5.7 Conservation properties

5.7.1 Conservation of mass

A unique feature of the staggered C-grid methods is the intrinsic satisfaction of local and
global conservation of mass. Local mass conservation is essential to capture hydraulic jumps
and global conservation of mass ensures numerical stability.

Let us reconsider the continuity equation (5.28). This equation is rewritten such that
the rate of change of mass (or volume) inside cell c equals the sum of the mass fluxes into
or out of the cell, as follows

dAc hc

dt
= −

∑
f∈∂c

sc,f ϕ
(n−1)
f
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with the mass flux ϕ
(n−1)
f given by Eq. (5.29). Note that this mass flux is unique between

the adjacent mesh cells of each interior face. Furthermore, there is no need for interpolation
of the normal face velocity uf .

At the boundary faces of Ω, the mass flux can be imposed or is otherwise given. By
virtue of Eq. (5.20), the outward pointing mass flux at boundary face f ∈ ∂Ω is given by

sc,f ϕ
(n−1)
f = sc,f (qf · nf )Sf = (qf · ncb,f )Sf

where the index cb refers to the cell adjacent to boundary face f .
Local conservation of mass is guaranteed because the right-hand side is written in the

flux form (or divergence form). Notice that this holds for any discretization of the the mass

flux ϕ
(n−1)
f .

Next, global mass conservation is obtained by summing over all the cells of the domain
Ω. Hence, ∑

c∈Ω

dAc hc

dt
=

d

dt

∑
c∈Ω

Ac hc = −
∑
c∈Ω

∑
f∈∂c

sc,f ϕ
(n−1)
f

Since each interior face is shared by two triangular (left and right) cells and each boundary
face touches one boundary cell, summation over all the cells in the computational mesh
can be converted into the addition of the sum over all interior faces and the sum over all
boundary faces,∑

c∈Ω

∑
f∈∂c

sc,f ϕ
(n−1)
f =

∑
f∈Ω\∂Ω

(sl,f + sr,f )ϕ
(n−1)
f +

∑
f∈∂Ω

(qf · ncb,f )Sf

=
∑

f∈Ω\∂Ω

(nl,f + nr,f ) · nf ϕ
(n−1)
f +

∑
f∈∂Ω

(qf · ncb,f )Sf

=
∑
f∈∂Ω

(qf · ncb,f )Sf

Observe how in the second line the two contributions from each interior face cancel each
other out, leaving only the net effect of the mass flux on the boundary. Hence, the rate of
change of the total volume in the domain is determined solely by the boundary fluxes, that
is,

d

dt

∑
c∈Ω

Ac hc = −
∑
f∈∂Ω

(qf · ncb,f )Sf

5.7.2 Conservation of momentum

A general feature of a staggered mesh method is the lack of a discrete equation for the
momentum vector. (Colocated discretization methods, in contrast, have a well-defined
discrete momentum vector field.) The purpose of this section is to construct an equation
for discrete momentum and subsequently to show both local and global conservation of
momentum. We follow the procedure of Perot [74].
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We start with the definition of discrete momentum by recalling Eq. (5.17). Hence, we
have

γ̃
(1)
ẽ =

∫
ẽ

hu · tẽ dl = ml · rfl −mr · rfr

with mc = hcuc the momentum per unit cell area in cell center. For the time being, the
definition of this cell center (either centroid or circumcenter) is not relevant. This also
applies to the position vector rfc = xf − xc. Similarly, we leave aside the definition of uc.

By means of our inner-oriented discretization scheme we will derive a discrete equation
for the derived quantity mc in the following steps below. Instead of Eq. (5.31), we consider
the following edge-based momentum equation

dml

dt
· rfl −

dmr

dt
· rfr + al · rfl − ar · rfr +

1

2
g
(
h2
r − h2

l

)
= g hf (dr − dl) (5.33)

where we have used ζc = hc − dc and Eq. (5.16). The pressure gradient terms are rewritten
in the following way

1

2
g
(
h2
r − h2

l

)
=

1

2
g
[(
h2
r − h2

f

)
+
(
h2
f − h2

l

)]
and

g hf (dr − dl) = g hf [(dr − df ) + (df − dl)]

with hf and df the water depth and the bed level at face f , respectively. The exact definition
of these face values is not relevant in the exposition below. Additionally, they will not be
used in the present discretization method.

Eq. (5.33) can be viewed as the sum of two separate equations, each of which is associated
with the segment of the dual edge ẽ within a cell. Hence, for each cell c adjacent to face f
we have the following equation(

dmc

dt
+ ac

)
· rfc +

1

2
g
(
h2
f − h2

c

)
= g hf (df − dc) (5.34)

We have now found an equation that provides the basis for proofs of conservation of both
momentum (this section) and energy (Section 5.7.3). The rest of this section will be devoted
to the derivation of the equation for momentum conservation for each individual mesh cell
(local conservation) and the entire domain (global conservation).

To begin with, Eq. (5.34) is multiplied by the outward normal of the face nc,f and its
size Sf , and subsequently summed over the faces of cell c∑
f∈∂c

nc,f Sf

(
dmc

dt
+ ac

)
·rfc+

1

2
g
∑
f∈∂c

nc,f Sf

(
h2
f − h2

c

)
= g

∑
f∈∂c

nc,f Sf hf (df − dc) (5.35)

We continue with further simplifications of Eq. (5.35). First, this equation is rewritten as(
dmc

dt
+ ac

)T ∑
f∈∂c

Sf nc,f⊗rfc−
1

2
g h2

c

∑
f∈∂c

nc,fSf+
1

2
g
∑
f∈∂c

nc,f Sf h
2
f = g

∑
f∈∂c

nc,fSf hf (df − dc)
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Next, using the geometric identities (5.26) and (5.27), we have

Ac

(
dmc

dt
+ ac

)
+

1

2
g
∑
f∈∂c

nc,f Sf h
2
f = g

∑
f∈∂c

nc,fSf hf (df − dc)

Now we finalize the construction of the momentum vector equation by reviewing the
right-hand side. Since df − dc is the bed slope in direction rfc, we can write this slope as
∇d · rfc. Hence, ∑

f∈∂c

nc,fSf hf (df − dc) =
∑
f∈∂c

nc,fSf hf ∇d · rfc

Assume that vector hf ∇d is constant in cell c, then a first order discretization of h∇d is
obtained in the following manner∑

f∈∂c

nc,fSf r
T
fc hf∇d =

(
hf ∇d

)T ∑
f∈∂c

Sf nc,f ⊗ rfc = Ac hf ∇d

Thus, we have developed a discrete form of the term g h∇d which is the reaction force per
unit mass exerted by the bed slope onto the fluid.

To sum up, the discrete version of the momentum vector equation for each mesh cell is
given by

dmc

dt
+

1

Ac

∑
f∈∂c

sc,f ϕ
(n−1)
f uf +

g

2Ac

∑
f∈∂c

nc,f Sf h
2
f = g hf ∇d

which shows that the discrete momentum per unit area in each individual mesh cell can
change as a result of the momentum flux (advection plus pressure) through the cell faces
and of the bed slope force. This establishes local conservation of momentum. Note that
the amount of momentum itself is immaterial, only its rate of change is important. It is
also important to note that the momentum flux between two adjacent cells is unique which
ensures the convergence to a weak solution in presence of discontinuities. In this regard, we
have made used of Eq. (5.23).

As a final step, we demonstrate global conservation of the discrete momentum. Here,
we assume that the bed is uniform, that is, ∇d = 0. Let us take the sum of the cell-based
momentum equation over all the cells of domain Ω. Thus,∑

c∈Ω

Ac
dmc

dt
+
∑
c∈Ω

∑
f∈∂c

sc,f ϕ
(n−1)
f uf +

1

2
g
∑
c∈Ω

∑
f∈∂c

nc,f Sf h
2
f = 0

We treat the advection and pressure term in turn. For the advection term we get∑
c∈Ω

∑
f∈∂c

sc,f ϕ
(n−1)
f uf =

∑
f∈Ω\∂Ω

(
sl,f ϕ

(n−1)
f uf + sr,f ϕ

(n−1)
f uf

)
+
∑
f∈∂Ω

(qf · ncb,f )Sfuf

=
∑

f∈Ω\∂Ω

(nl,f + nr,f ) · nf ϕ
(n−1)
f uf +

∑
f∈∂Ω

(qf · ncb,f )Sfuf

=
∑
f∈∂Ω

(qf · ncb,f )Sfuf
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where the internal fluxes cancel out, leaving only the net advection of momentum through
the boundary faces.

We continue with the pressure term. We have

1

2
g
∑
c∈Ω

∑
f∈∂c

nc,f Sf h
2
f =

1

2
g
∑

f∈Ω\∂Ω

(
nl,f Sf h

2
f + nr,f Sf h

2
f

)
+

1

2
g
∑
f∈∂Ω

ncb,f Sf h
2
f

=
1

2
g
∑

f∈Ω\∂Ω

(nl,f + nr,f ) Sf h
2
f +

1

2
g
∑
f∈∂Ω

ncb,f Sf h
2
f

=
1

2
g
∑
f∈∂Ω

ncb,f Sf h
2
f

where the pressure fluxes at internal faces balance out.

We conclude that the total momentum in the entire domain Ω can vary only due to the
momentum fluxes through the boundary of the domain, namely,

d

dt

∑
c∈Ω

Acmc = −
∑
f∈∂Ω

[
(qf · ncb,f )Sfuf +

1

2
g Sf h

2
f ncb,f

]

We note, however, that global momentum conservation is rarely the case in practice due to
nonuniform bathymetries but also due to the presence of external forces such as wind shear
stress, bed friction and Coriolis force (see Section 5.8).

We conclude this section with three remarks. First, conservation of momentum only
requires the advection term to be written in flux form, that is, Eq. (5.23). Second, there
is no need for defining the location of the cell-based momentum vector mc. Therefore,
the computational mesh does not need to be orthogonal. (This is the primary reason
why in practice we can allow some not well-centered triangular cells.) Finally, momentum
conservation does not put any restriction on the discretization of mc, uc, hf and h̃f (the
last one was not even included here).

5.7.3 Conservation of energy

While in Section 2.6.2 only global conservation of energy was proven, in this section
both local and energy global conservation are considered. Local conservation can now be
demonstrated because the discretization of the advection term has been established (see
Section 5.5.4).

The aim is to derive a discrete energy equation in the flux form from Eqs. (5.28) and
(5.32) which provides the proof of discrete energy conservation, both locally and globally.
In order to achieve this, we will first derive the continuous form of the energy equation and
then we will do the same for the discrete energy.

Conservation of energy is obtained by combining the continuity and momentum equations
in the following way. (See also Section 2.3.) Basically, we take the inner product of the
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momentum equation (2.2) with u and add this result to the product of the continuity
equation (2.1) with gζ − u · u/2. More specifically,

u · ∂hu
∂t

+
(
gζ − u · u

2

) ∂h

∂t
= u · ∂hu

∂t
− u · u

2

∂h

∂t︸ ︷︷ ︸
kinetic energy

+ gζ
∂h

∂t︸ ︷︷ ︸
potential
energy

=
∂

∂t

(
1

2
hu · u

)
+

∂

∂t

(
1

2
gζ2
)

which is the rate of change of the sum of the depth-integrated kinetic energy hu · u/2 and
potential energy gζ2/2. The final expression for the potential energy is obtained under the
assumption of stationary bed level, that is, ∂d/∂t = 0. Substitution of the remaining terms
of the shallow water equations yields

∂

∂t

(
hu · u+ gζ2

2

)
= −u · (∇ · (q⊗ u) + gh∇ζ) +

u · u
2

∇ · q− gζ∇ · q

With q = hu and rearranging the equation gives us the following

∂

∂t

(
hu · u+ gζ2

2

)
= −u · [∇ · (q⊗ u)] +

u · u
2

∇ · q− g q · ∇ζ − gζ∇ · q

= −u · [u (∇ · q) + (q · ∇)u] +
u · u
2

∇ · q− g∇ · (q ζ)

= −u · u
2

∇ · q− q · ∇
(u · u

2

)
− g∇ · (q ζ)

= = −∇ ·
(
q
u · u
2

)
− g∇ · (q ζ)

Therefore, the final expression for the equation of energy reads

∂

∂t

(
hu · u+ gζ2

2

)
+∇ · (q ghe) = 0 (5.36)

where
he = ζ +

u · u
2g

is the energy head.
This section continues with the derivation of the divergence form of the discrete energy

equation. To this end, we reconsider Eq. (5.34) and multiply this cell-based equation by the
outward pointing normal velocity integrated over the cell area sc,f uf Sf and then summed
over the cell faces. Hence,∑

f∈∂c

sc,f uf Sf

(
dhcuc

dt
+ ac

)
· rfc + g

∑
f∈∂c

sc,f uf Sf hf (ζf − ζc) = 0

where ζf = hf − df is the water level at face f . Again, the location of the cell center c
and the actual implementation of ζf are irrelevant. Furthermore, we also reconsider the
continuity equation (5.28) which is multiplied by gζc − uc · uc/2 so that we have

Ac

(
gζc −

uc · uc

2

) dhc

dt
= −

(
gζc −

uc · uc

2

)∑
f∈∂c

sc,f ϕ
(n−1)
f
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Let us first proceed with the combination of the temporal derivative terms only. This is
given by ∑

f∈∂c

sc,f uf Sf
dhcuc

dt
· rfc + Ac

(
gζc −

uc · uc

2

) dhc

dt

and is subsequently rewritten as

dhcuc

dt
·
∑
f∈∂c

sc,f uf Sf rfc −
1

2
Ac uc · uc

dhc

dt
+ g Ac ζc

dhc

dt

Then using the vector interpolation (5.24), we get

Ac uc ·
dhcuc

dt
− 1

2
Ac uc ·uc

dhc

dt
+g Ac ζc

dhc

dt
= Ac

[
d

dt

(
1

2
hcuc · uc

)
+

d

dt

(
1

2
gζ2c

)]
(5.37)

Note that the vector reconstruction is thus required to define the depth-integrated kinetic
energy at the cell center. Also note that the discrete bed level is constant in time.

What remains to be done is to substitute the following expressions for the time derivatives
into the left-hand side of the equation above,

Ac
dhc

dt
= −

∑
f∈∂c

sc,f ϕ
(n−1)
f (5.38)

and

Ac uc ·
dhcuc

dt
= −uc ·

∑
f∈∂c

sc,f ϕ
(n−1)
f uf − g

∑
f∈∂c

sc,f uf Sf hf (ζf − ζc) (5.39)

where we have used Eqs. (5.24) and (5.23). We will perform the analysis for each contribution
separately or for a certain combination of terms.

We consider the first two terms of Eq. (5.37) and then substitute both Eq. (5.38) and
the first term of the right-hand side of Eq. (5.39). We have

−uc ·
∑
f∈∂c

sc,f ϕ
(n−1)
f uf +

1

2
uc · uc

∑
f∈∂c

sc,f ϕ
(n−1)
f

Referring to Section 5.5.4, quantity uf must be a simple average of the cell-based velocity
vectors uc and unc, with indices c and nc denoting the neighboring cells sharing the face
f . This condition leads to a skew-symmetric advection operator of the discrete energy
equation, as follows

−uc ·
∑
f∈∂c

1

2
sc,f ϕ

(n−1)
f (uc + unc) +

1

2
uc · uc

∑
f∈∂c

sc,f ϕ
(n−1)
f = −

∑
f∈∂c

sc,f ϕ
(n−1)
f

1

2
uc · unc

The term on the right-hand side is in flux form and is thus conservative. Note that
arithmetic averaging in the first term causes the contribution from the continuity equation,
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the second term in the left-hand side, to vanish due to the equal contribution of the diagonal
coefficient of uc · uc/2. Furthermore, according to the term on the right-hand side, the
off-diagonal coefficients whose corresponding cells c and nc share the face f are equal in
magnitude but opposite in sign as the face flux is unique (snc,f = −sc,f). The resulting
skew symmetry of the discrete advection operator prevents spurious kinetic energy gains or
losses [100]. This also minimizes the aliasing error [44]. Finally, it must be noted that mass

flux ϕ
(n−1)
f in Eq. (5.23) is identical to the one in the continuity equation (5.28). However,

its discretization is not relevant here. (As we will see below, it becomes crucial for the local
conservation of discrete potential energy.)

Next, we consider the third term on the left-hand side of Eq. (5.37) where we substitute
Eq. (5.38) and adding to that we reconsider the first term of Eq. (5.37) while substituting
the second term of the right-hand side of Eq. (5.39). Thus, we have

−g ζc
∑
f∈∂c

sc,f ϕ
(n−1)
f − g

∑
f∈∂c

sc,f uf Sf hf (ζf − ζc)

Then substitution of Eq. (5.29) yields

−g
∑
f∈∂c

sc,f ϕ
(n−1)
f ζf

which is expressed in the flux form. It is notice that this result is obtained from∑
f∈∂c

sc,f ϕ
(n−1)
f ζf = ζc

∑
f∈∂c

sc,f ϕ
(n−1)
f +

∑
f∈∂c

sc,f ϕ
(n−1)
f (ζf − ζc) (5.40)

which is the discrete version of the identity ∇ · (q ζ) = ζ∇ · q+ q · ∇ζ (see also Eq. (2.7))
and also associated with the antisymmetry relation div = −gradT (see also Eq. (2.8)).
The relationship between the discrete product rule (5.40) and antisymmetry follows from
summation by parts [58].

The antisymmetry property ensures that the pressure term conserves discrete potential
energy. The prerequisite for this, however, is the discretization of the mass flux, namely,
Eq. (5.29), and in turn hf via Eq. (5.30).

By putting together all the terms, we obtain the final discrete energy equation for each
cell c in the divergence form,

Ac
d

dt

(
hcuc · uc + gζ2c

2

)
+
∑
f∈∂c

sc,f ϕ
(n−1)
f g he,f = 0 (5.41)

with
he,f = ζf +

uc · unc

2g

the discrete energy head at the cell face f . Eq. (5.41) is the discrete counterpart of
Eq. (5.36).
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Global conservation of the discrete energy follows from the summation over all mesh
cells of the computational domain, which is then given by∑

c∈Ω

Ac
d

dt

(
hcuc · uc + gζ2c

2

)
+ g

∑
c∈Ω

∑
f∈∂c

sc,f ϕ
(n−1)
f he,f = 0

Now, the second nested sum is rewritten as∑
c∈Ω

∑
f∈∂c

sc,f ϕ
(n−1)
f he,f =

∑
f∈Ω\∂Ω

(sl,f + sr,f )ϕ
(n−1)
f he,f +

∑
f∈∂Ω

(qf · ncb,f )Sfhe,f

=
∑

f∈Ω\∂Ω

(nl,f + nr,f ) · nf ϕ
(n−1)
f he,f +

∑
f∈∂Ω

(qf · ncb,f )Sfhe,f

=
∑
f∈∂Ω

(qf · ncb,f )Sfhe,f

which displays the internal cancellation of fluxes. Hence, the rate of change of the discrete
energy in the entire domain is due only to the boundary fluxes. This confirms global energy
conservation. This is also a statement of numerical stability because the total energy (or
energy norm) cannot increase, at most decrease due to (physical or numerical) dissipation.

In summary, the following key requirements must be met to guarantee conservation of
discrete energy, both locally and globally.

1. The cell velocity reconstruction (5.24) of Perot [74]. However, this is a non-essential
requirement because it is a direct consequence of the discretization of the advection
term as shown in Eq. (5.22). Other advection discretizations might impose other
restrictions arising from the need for conservation of energy.

2. The choice of uf defined as a simple average and used in Eq. (5.23). This interpolation
is the only possible one for the required skew symmetry and therefore must be applied
to any arbitrary mesh.

3. The discrete mass flux is defined as the product of the arithmetic average of the
neighboring cell-center water depthts (5.30) and the depth-averaged face normal
velocity. This definition is expressed by Eq. (5.29).

4. The discrete product rule (5.40) (or discrete integration by parts) must be employed to
maintain local conservation of potential energy. Note that this constraint is equivalent
to the pressure gradient and the divergence of the mass flux being each other’s negative
transpose.

5.8 Discretization of non-conserving momentum forces:

non-hydrostatic pressure, wind shear, bed friction

and Coriolis force

This section is under preparation.



Chapter 6

Time integration

This chapter is under preparation.
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Chapter 7

Dispersion analysis of staggered mesh
discretizations

This chapter is under preparation.
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Chapter 8

Three-dimensional shallow water
equations

This chapter is yet empty. The following link is left here to give an idea of what the content
of this material will look like: SWASH − sigmal layers.
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Chapter 9

Numerical approaches

This chapter is under preparation.
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Chapter 10

Implementation of boundary
conditions

This chapter is under preparation.
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Chapter 11

Iterative solvers

11.1 Strongly Implicit Procedure (SIP)

We want to solve the following linear system of equations

AN⃗ = b⃗ (11.1)

where A is some non-symmetric penta-diagonal matrix, N⃗ is the wave action vector to be
solved and b⃗ contains source terms and boundary values.

The basis for the SIP method (Stone, 1968; Ferziger and Perić, 1999) lies in the observa-
tion that an LU decomposition is an excellent general purpose solver, which unfortunately
cannot take advantage of the sparseness of a matrix. Secondly, in an iterative method, if
the matrix M = LU is a good approximation to the matrix A, rapid convergence results.
These observations lead to the idea of using an approximate LU factorization of A as the
iteration matrix M , i.e.:

M = LU = A+K (11.2)

where L and U are both sparse and K is small. For non-symmetric matrices the incomplete
LU (ILU) factorisation gives such an decomposition but unfortunately converges rather
slowly. In the ILU method one proceeds as in a standard LU decomposition. However, for
every element of the original matrix A that is zero the corresponding elements in L or U is
set to zero. This means that the product of LU will contain more nonzero diagonals than
the original matrix A. Therefore the matrix K must contain these extra diagonals as well
if Eq. (11.2) is to hold.

Stone reasoned that if the equations approximate an elliptic partial differential equation
the solution can be expected to be smooth. This means that the unknowns corresponding
to the extra diagonals can be approximated by interpolation of the surrounding points. By
allowing K to have more non zero entries on all seven diagonals and using the interpolation
mentioned above the SIP method constructs an LU factorization with the property that for
a given approximate solution ϕ the product Kϕ ≈ 0 and thus the iteration matrix M is
close to A by relation (11.2).
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To solve the system of equations the following iterations is performed, starting with an
initial guess for the wave action vector N⃗0 an iteration is performed solving:

U N⃗ s+1 = L−1K N⃗ s + L−1 b⃗ (11.3)

Since the matrix U is upper triangular this equation is efficiently solved by back substitution.
An essential property which makes the method feasible is that the matrix L is easily invertible.
This iterative process is repeated s = 0, 1, 2, ... until convergence is reached.



Chapter 12

Parallel implementation aspects

This chapter is under preparation.
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