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Unfortunately, the original version of the article contained errors in the presentation of the proof of

momentum conservation (see Appendix A of the original article). The correct and final version of the proof

is presented in this note. Note that the meaning of the variables, parameters and indices in the equations

below can be found in the original article.

The objective of this note is to demonstrate that the semi-discretized momentum equation (see the

original article for the construction of the discretization), for uf > 0,
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as implemented in UnSWASH, does not produce a momentum conservation error, given a uniform bed and

a zero bed friction. By means of
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we obtain the following finite difference form
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is the depth-integrated total pressure at the circumcentre. Discrete momentum conservation can be expressed

as the rate of change in the total amount of momentum hu within a control volume is due only to the net flux

through the edges of the volume. Since the normal face velocity uf is the primary unknown, interpolation

must be employed to obtain the momentum at a single location within the mesh. To this end, the mesh cell

is treated as the control volume. Subsequently, we derive an equation for the cell-based momentum vector

using Perot’s interpolation scheme [1], as given by
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Finally, summation of its flux contributions over the cell faces must lead to a discrete equivalent of the

momentum equation in divergence form, which completes the proof. This formal procedure of proof utilizes

the geometric properties of the mesh and is also applicable to Cartesian staggered schemes (see, e.g. [1, 2]).

First, Eq. (3) is rewritten as
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the cell-based discretization of the advection term evaluated for the two cells adjacent to face f . Note that

the transported velocity ûk is interpolated from face normal components from the cell upwind of face k. As

a consequence, ccR · nf = 0 if uf > 0, and likewise, ccL · nf = 0 if uf < 0. Using the following expression
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and the continuity equation
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the obtained vector cc is rewritten as
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Substituting into Eq. (5) and using the following relation
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we get
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Next, the discretized equation is multiplied by the normal of the face nf and its length lf , and subse-

quently summed over the faces of cell c
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We now demonstrate conservation of momentum by transforming the above equation into an equation for the

cell-based vector hu, i.e. the total amount of momentum per unit cell area. Each interior face is shared by

two triangular cells of which one contributes to the cell under consideration. Furthermore, at the boundary

face a flux of momentum is prescribed.

First, the rate of change in momentum can be recasted as
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following from Eq. (4). This holds for all cells in the computational mesh.

Next, the advective acceleration term can be rearranged with the aid of the following geometric identity
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with I the identity matrix. This identity follows from the divergence theorem [1]. Then, using Eq. (6), the

advection term can be expanded as
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which conserves momentum in the considered cell since αcR,k = −αcL,k at each interior face k. This implies

that the sum of contributions to the left and right cells cancels the advective flux at face k. This holds for

all cells except the boundary cells where the change in momentum is due to the fluxes across the boundary

faces.

Finally, the pressure term in the interior cell can be rewritten as
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by noting that the pressure gradient is aligned with the flow direction and the cell has a closed surface. In

case the cell under consideration is a boundary cell, then
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with Pf the contribution to the prescribed momentum flux.

In short, by rewriting the finite difference form (1) into a discrete equation in divergence form without

introducing any other approximation, we have shown that it does not create or destroy momentum in each

individual mesh cell of the computational domain. This implies that the computed amount of momentum

can only change as a result of a non-zero net momentum flux over the boundary of the domain, a non-uniform

bed, or a non-zero bed friction.
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