Numerical modeling of wave propagation,
breaking and run-up on a beach

G.S. Stelling and M. Zijlema

Abstract A numerical method for free-surface flow is presented at itimeod study-
ing water waves in coastal areas. The method builds on thinean shallow water
equations and utilizes a non-hydrostatic pressure ternesoribe short waves. A
vertical boundary-fitted grid is used with the water depthdéid into a number of
layers. A compact finite difference scheme is employed gt into account the
effect of non-hydrostatic pressure with a few number ofigatayers. As a result,
the proposed technique is capable of simulating relatisktyrt wave propagation,
where both frequency dispersion and nonlinear shoaling ateimportant role, in
an accurate and efficient manner. Mass and momentum arttystoaserved at dis-
crete level while the method only dissipates energy in thee ad wave breaking.
A simple wet-dry algorithm is applied for a proper calcuatiof wave run-up on
the beach. The computed results show good agreement wilytiaaband labora-
tory data for wave propagation, transformation, breakimgjrn-up within the surf
zone.

1 Introduction

Wave transformation in the surf zone plays an important imleoastal engineer-
ing since, nearshore waves are the driving forces for maayshere phenomena,
such as longshore currents, water level set-up, sedin@mtarosion, and coastal-
structure loading. Surf zones are characterised by theeirsévle transformation of
organized wave motion of the incident short, wind-generataves into motions of

G.S. Stelling
Delft University of Technology, Faculty of Civil Engineeg and Geosciences, P.O. Box 5048,
2600 GA Delft, The Netherlands, e-mail: g.s.stelling @tfidd

M. Zijlema
Delft University of Technology, Faculty of Civil Engineeg and Geosciences, P.O. Box 5048,
2600 GA Delft, The Netherlands, e-mail: m.zijlema@tudaelft



2 G.S. Stelling and M. Zijlema

different types and scales e.g., turbulence and low-frequenotion (well-known

as the "surf-beat”). The main features associated withrénestormation of coastal
waves across a surf zone are illustrated in Fig. 1. (SWL aextbe still water level.)
In the pre-breaking region, wave transformation is describy the effects of wave

SHOALING BREAKER ZONE RUN-UP

Fig. 1 Wave transformation across a typical surf zone.

steepness due to the nonlinearity (or amplitude dispersiod wave shortness due
to the frequency dispersion. The front face of a wave wikkptn continuously un-
til the front becomes vertical. Therefore, the frequencgt amplitude dispersion
effects must balance each other, so that waves of finite audpliand permanent
form are possible [31]. The bathymetric variations in shalivater distort this bal-
ance and cause instabilities and subsequent wave bre&kitg. the wave breaks,
turbulence is generated and becomes a dominating feature dfow field. The
wavebreaker-generated turbulence balances the stegpeihe front and stabi-
lizes the surface profile [31]. The broken waves propagaite aigradual change of
form and resemble steady bores. At the end, they becom&edydbng and run up
on the beach. The run-up starts when the bore reaches thelisharorresponding
to a stage of the motion with no water in front of the bore.

The simulation of broken waves and wave run-up amounts tedhgion of the
nonlinear shallow water (NLSW hereinafter) equations feefsurface flow with-
out viscosity terms in a depth-integrated form [16, 21, 32.9. These hyperbolic
equations are mathematically equivalent to the Euler éopmffor compressible
flows. Discontinuities are admitted through the weak fornthefse equations and
can take the form of bores which are the hydraulic equivadérshock waves in
aerodynamics. The conservation of energy does not holgat¢he discontinuities
but the conservation of mass and momentum remains validoBsidering the sim-
ilarity between broken waves and steady bores, energydissh due to turbulence
generated by wave breaking is inherently accounted forg]L6,

In the pre-breaking region, however, the NLSW equations diohold since,
they assume a hydrostatic pressure distribution. Thesatiegs prohibit a correct
calculation of frequency-dispersive or short waves. Meegothey predict that the
front face of any wave or bore will steepen continuously luatvertical front is
formed. Only the deviations from hydrostatic pressure calarice the steepening
of the front and stabilize the surface profile before it beeswertical. In this study,
we discuss an extension of the NLSW equations to include ffleeteof vertical
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acceleration so that the propagation of short, nonlineaewavith finite amplitudes
can be simulated.

A main difficulty occuring in the simulation of free-surfaftews is the proper
handling of a moving free surface since this is part of theitsah itself. Many
methods for the treatment of the free surface are descnibige lliterature. The most
well-known ones are the Marker-and-Cell (MAC) method [1B¢ Volume-of-Fluid
(VOF) method [18] and the level-set method [30]. An overvigithese methods
can be found in [25]. Although, these techniques can desevdve overturning in a
very accurate manner, they yield more detailed informatian necessary for many
coastal engineering applications. Moreover, they are tmopuiting intensive when
applied to the large-scale wave evolution in the surf zone.

A much simpler approach is the one in which the free-surfaggan is tracked
using a single-valued function of the horizontal plane asedo the NLSW method-
ology. Recently, the development of so-called non-hydtisimodels using this
approach has been a popular topic of many ocean and coadelingpactivities.
Well-known papers on this subject are Casulli and Stell@j@hd Stansby and Zhou
[26]. The models in these papers consist of the NLSW equsitidth the addition
of a vertical momentum equation and non-hydrostatic pressuhorizontal mo-
mentum equations. As such, the total pressure is decomjtseldydrostatic and
non-hydrostatic components. The underlying motivationtfas approach is that
existing shallow water packages need to be adapted slightly since the correc-
tion to the hydrostatic pressure is done after the NLSW eoushave been solved.
As a consequence, this reduces the effort of software erxtelasnd maintenance
to a minimum. Also, Mahadevan et al. [22] have shown that tihnique leads
to a more stable and efficient non-hydrostatic calculati@ntin the case without
splitting the pressure into hydrostatic and non-hydrasgetrts. Moreover, the non-
hydrostatic models require much fewer grid cells in theigattdirection than the
MAC and VOF methods. These benefits make simulations of wawvesformation
in coastal waters much more feasible and efficient. Thelgisgver, still ongoing
research on this approach. The choice of an appropriate neahapproach for a
non-hydrostatic free-surface flow model appears to be riviadt Several different
solution procedures (fractional step versus pressuneciion approach, modeling
of the free-surface boundary condition, Cartesian vessdsoordinates, etc.) have
been proposed by different authors; for an overview, se¢ 488 the references
therein.

Another issue that remains to be discussed is wave bredkinginciple, non-
hydrostatic models represent a good balance between parniliy (enables wave
shoaling) and frequency dispersion (corrects celerityhoiding wave) so that initi-
ation of the wave breaking process and the associated elosgps can be described
adequately by these models. However, most of the well-ksitelol non-hydrostatic
models, [22, 9, 26], are by no means momentum-conservétigeevident that the
numerical schemes involved must treat shock propagatiequately in order to
model broken waves in the surf zone. Traditionally, the &hoapturing schemes
applied to shallow water flows at collocated grids are basethe Godunov-type
approach, where a discontinuity in the unknown variableatéwdepth and dis-
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charge) is assumed at the cell edges and a Riemann solvepiey&d to compute
the flux across the cell interface [33]. Applications of thigproach to the NLSW
equations are given e.g., in Ref. [19, 6, 20]. However, théghad suffers of four
main shortcomings. First, in the case of variable topogyamhumerical imbalance
may occur, resulting in an artificial flow, caused by incotesis approximation of
the flux-gradients and source terms due to the bottom slogeorilly, this tech-
nigue often uses explicit time integration. As a consegegetime steps may be
very small due to the CFL condition related to the shallowtdephirdly, although,
extension to higher dimensions @) by the common local dimensionally split ap-
proach is trivial, it is disputable. Finally, extension bétGodunov-type methods to
non-hydrostatic flows is non-trivial.

To our knowledge, no papers have been published on the gionut surf zone
phenomena involving breaking waves and wave run-up empidyL SW equations
including non-hydrostatic pressure. The reason for thjgrabably of a historical
nature. Traditionally, the effect of non-hydrostatic m@® is taken into account by
a Boussinesq-type approximation through adding higheerodérivative terms to
the NSLW equations [24]. As such, the Boussinesg-type waweets are based on
an efficient depth-integrated formulation and have becoeng popular for real-life
applications involving wave dynamics in coastal regiond harbours. One of the
main challenges in the development of the Boussinesq-tygmets is the accurate
simulation of wave propagation from deep water through tivé Zone. Because
such models are strictly valid only for fairly long waveseth have been attempts
to improve frequency dispersion that may complicate theedgihg formulation.
Since then a continual extension of Boussinesq theory hers dr@going with recent
advances in its application to highly nonlinear waves arepdewater. See Ref. [11]
for a survey of the field. In addition, because of the appratiaoms involved it may
not be guaranteed that the Boussinesqg-type wave modelsreditfpthe onset of
wave breaking and its energy losses correctly. It seemsttiettenergy dissipation
can only be proven by adding a dissipation model to the Boessj equations; see
[11] and the references quoted there.

The purpose of the present work is to report on the expersetiad have been
gathered in the development of a non-hydrostatic model daistal waves in the
surf zone. We apply an implicit finite difference method faaggered grids as de-
scribed in [28], originally developed for modeling subicat flows in, e.g. coastal
seas, lakes and estuaries (see, e.g. [27]). The rationlledsthis approach is that
a discretized form of the NLSW equations can automaticadlyshock-capturing
if the momentum conservation is retained in the numerichés®. As a conse-
quence, this simple and efficient scheme is able to trackdtumblocation of wave
breaking and compute the associated energy dissipatiboutithe aid of analytical
solutions for bore approximation or empirical formulasdior energy dissipation.
In order to resolve the frequency dispersion up to an acbéptavel of accuracy
using as few layers as possible, a technique as propose@jiis[2mployed that
is tailored to wave propagation applications. It is basechaompact difference
scheme for the approximation of vertical gradient of the-hgdrostatic pressure.
Unlike Boussinesg-type wave models, which rely on highdeoderivative terms
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for better dispersion characteristics, the present madptaves its frequency dis-
persion by increasing the number of vertical layers rathanincreasing the order
of derivatives of the dependent variables. Hence, it castat most second order
spatial derivatives. Therefore, the second order acctirdte difference approxi-
mations are considered to be sufficiently accurate from aemigal point of view.
For the calculation of wave run-up on the beach, use of mdwinmdary conditions
is required. Several numerical strategies have been peddos a proper represen-
tation of the interface of water and land. We refer to [1, #] dwerviews on this
subject. In the present work, a very simple approach asetlgat[28] is adopted.
This method tracks the motion of the shoreline very accilyatghout posing nu-
merical instabilities by ensuring non-negative water tept

2 Governing Equations

We consider a two-dimensional wave motion in the verticahpl The waves are
assumed to approach perpendicular to the beach. The phgsivain represented
in a Cartesian coordinate systérjz) is bounded vertically by the free-surface level
above the reference plares {(x,t), and the bottom level measured from the refer-
ence plane positively downwards= —d(x). Furthermoret is the time. The water
depthisH = { + d. See Fig. 2.

plane of reference H

AMANRNIRNNA

Fig. 2 Water area with free surface and bottom.

The governing equations are the Euler equations for the ffaanancompress-
ible, inviscid fluid with a constant densipp, given by

ou oJdw

5-1-5—07 1)
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ou oduw? oJdwu gal 1dq
e i e e o e A
ot = ox 0z  podX poOX
0W+ 0uw+ ow? N 10q
ot dx 0z ppdz
whereu(x, zt) andw(x,zt) are the mean velocity components in the horizoxtal
and verticak—direction, respectively is the acceleration of gravitg(x,zt) is the
non-hydrostatic pressure. For convenience, we chp@sel. For accuracy reasons,
the total pressure has been split into two components, y@rolstatic,g({ — 2),

and non-hydrostatiay; for details see, e.g. Ref. [9] and [35]. Next, the kinematic
conditions are given by

0, )

3)

W,z = % + u%, W= g = —u%. 4)

To compute the free surface, we integrate Eq. (1) over themadpthH and
use the kinematic condition at the free surface (4), giviregfollowing free-surface
equation

20 0Q <
= +5=0, Q_UH_/idudz 5)
with Q the flow rate and) the depth-averaged horizontal velocity.

To get a unique solution, proper numbers and types of boyratarditions are
required at all boundaries of the physical domain consitléfée distinguish four
types of boundaries: i) free surface, ii) bottom, iii) ofésh and iv) onshore. In prin-
ciple, one normal and one tangential component of the vgl@eid/or stress are
imposed at these boundaries. At the free surface, we assaménd (tangential
stress) and|,_; = O (normal stress). At the bottom, we assume no bottom frictio
(tangential stress) and the normal velocity is imposeduinche kinematic condi-
tion (4). Because of continuity, the dischatgel must equaty, with cq the group
velocity [11]. For arbitrary depths, we have

© 1 okH
Q=" n_§(1+sinh2kH>’ ©

wherew andk are the angular frequency and the wave number, respectfetye
first input harmonic. Thus, we impose the depth-averagestitgll = nw( /kH at
the offshore boundary. Finally, we may consider two typesefonshore condition.
The moving shoreline, in the case of calculation of wave upren the beach, re-
quires a numerical treatment which will be outlined in SB8. In the pre-breaking
zone, an artificial outflow condition is imposed. Usuallye #o-called Sommerfeld
radiation condition is employed, which allows the (longveato cross the outflow
boundary without reflections [11]. This condition is given b

of  of

il =0 7
ot Cax (7)
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wheref represents the surface elevation or the tangential vglanitc is the wave
phase velocity equats= /gH for long waves.

The set of equations (2X3), (5) can be considered as mass- and momentum-
conservative NLSW equations with the inclusion of the waitacceleration. These
equations are valid in both pre-breaking and breaking regéescribing nonlinear
shoaling, breaking, dissipation after breaking and rumfupaves.

3 Numerical Framework

The numerical framework is briefly presented and discusBésdinction is made
between space and time discretizations as treated in Sé@nd 3.2, respectively,
after which the solution technique is outlined in Sect. 3.3.

3.1 Space discretization

3.1.1 Grid schematization

The physical domain is discretized by employing a structgned. A distinction is
made between the definition of the grid in the horizontal aertizal direction. In the
horizontal planes, we consider aregular guig, /5[ Xy1/2 = 14X, i=0,...,I } with
Ax the length of the cell. The location of the cell centre is giby X = (Xi_1/2 +
Xi+1/2)/2. In the vertical direction, a boundary-fitted grid is enygd. The domain
is divided intoK layers. The interface between two layers is denotegi as,(x;t)
with k=0,...,K. The layer thickness is defined las= 7, 1/ — z_1/2 = fkH with
0<fy<1 and% fk =1; see Fig. 3. The water levgl ;> = ¢ and the bottom level

21/, = —d are located at = x;. As a consequenckl, = { +d is given in poini and
the water depth at a cell vertex is not uniquely defined. Themdepth at+1/2 is
denoted a$l and its approximation depends on the directio®pfy /2, i.e. the flow
rate normal to the face of the water column1/2, as follows,

. Hi, if Qu1/2>0
Hit1/2= ¢ Hisa, _ if Qi1/2<0. (8)
max({i, {i+1) +min(d;, dit1), if Q12=0

The approximation df:IiH/z in case ol 1/ = 0is heuristically based and appears
to be very robust. For consistency, we have

—di, if Qip1/2>0
Zi1/212=§ —Gi+1, if Q112 <0 (9)
—min(di, dis1), if Q112=0
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Fig. 3 Vertical grid definition with layer interfaces.
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and _
G, if Qi1/2>0
Z1/2K41/2= 3 Git1 if Qi1/2<0 (10)
max({i,Giv1), if Qr1/2=0
and A
Z12k41/2 = Zy12k-1/2+ fkHiyr2, k=1, ,K-1. (11)
This completes our description of the grid.
The vertical grid schematization gives rise to the definitibthe vertical velocity
with respect to the moving layer interfaces. The verticabeity relative to layer

interfacez, 1 />, denoted asy, />, is defined as the difference between the vertical
velocity along the streamline and the vertical velocityngjthe interface, as follows,

0z 0z
Wi 1/2 = W(Zy1/2) — (;[1/2 —U(Zer1/2) ;Xl/z : (12)

The kinematic boundary conditions, in terms of relativeticat velocity, arew; /, =
Wet1/2 =0.

3.1.2 Location of grid variables

A staggered grid arrangement is used in which the velocitpmmentsu andw
are located at the centers of the cell fages 1/2,k) and(i,k+1/2), respectively.
The water level is located at. Concerning the non-hydrostatic pressqréwo
ways to assign this unknown to grid points may be employeds Variable can
be given either at the cell centérk) or at the facg(i,k+ 1/2). The choice de-
pends on the discretization of the vertical pressure gradiemely, explicit central
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differences and an edge-based compact finite differenanselfl7], respectively.
Since, the present work deals with the application to waepagation, only the lat-
ter discretization will be considered [29]. The former appmation is particularly
meant for applications where vertical structures are irgmntre.g., stratified flows
with density currents. Liksv, the relative vertical velocitw is located at the face
(i,k+1/2). Fig. 4 shows the staggered grid layout.

Fig. 4 Arrangement of the W,
unknowns in a staggered grid. !

k+1/2

k-1/2

i-1/2 1 i+1/2
z
T%
X

Unknowns not present at points where they are required anpated by inter-
polation using the fewest number of interpolation pointess stated otherwise. So,
9 indicates arithmetic averaging of the unknogvrin x—direction over their two
points of definition that are nearestitdrhe unknownp not given at layer interface
%, 1/2 is approximated at this interface as

Oxhi 1 + Prey1hi

13
e et (13)

¢_§+1/2 = ¢(Zk+1/2) ~

Note thatdy = (i, 1/2 + dx_1/2)/2 since, arithmetic averaging inside a layer is
exact. Finallyg;} gives the average value ¢fat (i, k) resulting from the two one-
dimensional interpolation formulas in each direction.

Space discretization of the governing equations is cawigdin a finite vol-
ume/finite difference fashion. For each unknown, we definelleation of a finite
number of non-overlapping control volumes that covers thelezdomain. Each un-
known, except the water level, is considered as volumeagestand is at the centre
of its control volume,

1 "Zt1)2 | q 1 Tt 1 | q
Ui1/2k= = / U|x=x; Z, Wk = / Wix=x 02,
i+1/2, A1k S22 12 X=Xi11/2 i,k+1/2 Nikeaj2 Joa, X=X
1 et
Oiks1/2 = / Alx=xdz (14)
hikr1/2 J=7
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with
hisa/ok= fiHipay2 (15)
and 1
k12 = > (hix+higea). (16)

3.1.3 Spacediscretization of global continuity equation

A global mass conservative approximation of Eq. (5) is givgn

d&  Hivy2Uiir2—HisyoUiige
bl =0 17
dt + AX (47
with
K ~
Uit12= = > Ui1/2khi1/2k- (18)

Hii12&

3.1.4 Spacediscretization of local continuity equation

The space discretization of Eq. (1) consists of two stepst,Ehis equation is inte-
grated vertically over its control volume and thereafteragpropriate finite differ-
ence scheme is applied to each horizontal term of the equadti® layer-averaged
continuity equation (1) for layer ¥ k < K is obtained using the Leibniz’ rule, as
follows,

%12 (U OW ahu 0z|%+1/2
/ (EJ’E) dz= =35 —Ug |l W —Weiz=0.  (19)

Z-1/2 Z1/2

By virtue of (12), this equation becomes

0hk dhkuk

ot + “ax + 012 — W-1/2=0, (20)

so that the total amount of water in a moving cell with thicksle, is conserved.
Discretization of Eq. (20) ix—direction gives

dh k n @i1/2k— A-1/2k

at Ax + W12~ Wk-12=0 (21)

with

@172k = Niva2kUir12k- (22)
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3.1.5 Spacediscretization of horizontal momentum equation

Again, the space discretization of Eq. (2) consists of twepstas outlined in
Sect. 3.1.4. The derivation of layer-averaging of the teimEq. (2) is given in
[35] and will not be repeated here. The layer-averagechomentum equation in
conservative form reads

Jdhyug 0hkuﬁ _ -
ot ox +u§+1/2‘4<+l/2_u§71/2‘*4<71/2

07 ohag 0%, 1/2 0%_1/2
+gh<&+ ax — Okt1/2 Ox +Ok-1/2 Ox =0. (23)

A spatial discretization of Eq. (23) is given by

X ~ —X A —X
dhi’ 1 2kl 11/2 L ki B
dt AX

O ok 1/2P0 1/24k0 12— B2k 1/2%0 1/2.4k-1/2

Gi1— G Dia i c— hidix
AX AX

+gﬁ;(+1/2,k

Zi1k+1/2 — Lkr1/2 Zy1k-1/2 ~ L k-1/2
_qix+1/2,k+1/2 Ax +qix+1/2,k,1 /2 Ax =0.(24)

The one-sided second order upwind scheme is used to ap@tedat (i,k) [17],

SUi_1/2k— 3Ui_3/2k, if @ >0
Uik = (25)

3 1 e —X ’
SUir1/2k— 3Uirs/2k, If @ <0

This scheme generates a limited amount of numerical digsipahich is sufficient
to effectively suppress spurious waves with wavelendtk. I hese undesired wave
components are due to nonlinearities.

Since, the velocity componentis the primitive variable and nap = hu, Eq.
(24) is not appropriate for further implementation. For teéormulation, we first
consider the discretized form of Eq. (20) in pofint-1/2, k),

dﬁx / ax EX
i+1/2k ik~ Pk .
dt I Ax =+ c'o?(+1/2’k+1/2 — W 1/2k-1/2=0. (26)

Multiplying Eq. (26) withu;, 1,5 and substracting the result from Eq. (24), after
which it is divided byﬁiXJrl/z’k, yields
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du 12k 1 <aix+1,k(0i+1,k — U172 — Gk(Gik— U124 )
dt A2k Ax

n w?(+1/2,k+1/2 (T2 mix+1/2,kfl/2

U —Uis1/26) — —=x (U, 1/24_1/2 — Yit1/2K)
h?(+1/2,k i+1/2k+1/2 7 Hi+1/2, hix+1/2,k i+1/2k—1/2 ~ Yi+1/2,
+gZi+1—Zi L1 (hi+1,kqiz+1,k— hi,ink>
X
Ax hiy1/2k Ax

qix+1/2,k+1/2 Z1k+1/2 ~ 4 k+1)2 qix+l/2,k—l/2 4i1k-1/2— 4 k-1/2
e +—= =0. (27)
hiy1/2k Ax Nii1/2k Ax

Eq. (27) guarantees conservation of momentum and is thigsfealsimulation of
breaking waves. Note that Eq. (27) does not contain a beeé sloyprce term. Hence,
transition from sub- to supercritical flows near steep begest can be computed
correctly.

3.1.6 Spacediscretization of vertical momentum equation
The final discretizedv—momentum equation can be derived in exactly the same
manner as done for the—momentum equation except for the pressure gradient.

The equation is given by

—Z
AWki12  Birr/2ke/2 Wis k12— Wike1/2

dt ZﬁiZ,|<+1/2 Ax
—Z
Gi1/2k+1/2 Wikt1/2 — Wim1kt1/2
—7
2hiky1/2 Ax
@ yq @)
= (Wi 3/2 — Wik 1/2) + = — (Wi /2 — Wik-1/2)
2N 1100 Nikg1/2
Z
+_ZL/ H?hdz:o. (28)
hixy12 /2 02

Note that central differences have been used in Eq. (28), i.e

. 1
Wii1/2kt1/2 = 5 (Wiki1/2 T Wiskia/2) - (29)

Since, the accuracy of the frequency dispersion for redaghort waves strongly
depends on the discretization of vertical motion, we appgeond order compact
scheme for the approximation of the vertical gradient of-hgdrostatic pressure,
allowing very few vertical grid points with relatively lonmumerical dispersion and
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dissipation [17]. Firstly, we consider the-momentum equation at, 1 />, Eq. (28),

in which the pressure gradiedit|/ 0z is approximated through backward differenc-
ing and subsequent thve-momentum equation a_1,, where the approximation
of dq/0zis obtained by means of forward differencing. Thereaftertake the av-
erage of the discretizes—momentum equations at ;> andz, 1/, onto the layer

k. Thus, the integral of pressure gradient in Eq. (28) is axprated by means of
backward differencing,

1 /Zk“ aqhdz: A(Z k1) —d(Zk) o Gike12—Gie1/2 (30)

ﬁiz,k+1/2 z 0z Eiz,k+1/2 hi

The w—momentum equation at interfagg 1, is obtained from Eq. (28) by de-
creasing the indek by 1. However, the integral of pressure gradient is evatliate
using forward differencing. This gives

1 % aq|-dz— Ad(Zk) —A(Zk1) _ Giki1/2—Cik1/2
=z 5o i02= =7 ~ .
hix_1/2 /a1 02 hik—1/2 i

(31)

Finally, we take the average of the-momentum equations at interfacgs; ;> and
Z11/2, QIVINg

d(w + Wi 1 - — ik
( |,k+1/zdt i k—1/2) 2 ((wa)i,k+l/2+(LWW)i,kfl/Z) N ql,k+1/2hi quk 12 _,
(32)
with LW the discrete operator representing advection terms aimedtbefore. Due
to the use of the compact scheme, Eq. (32) contains two timeatiges forw.

It must be emphasized that Eq. (32) is solved for layersk2< K, i.e. including
the free surface, but excluding the bottom. Conditipn, = 0 can be readily in-
corporated in Eq. (32) fdt=K asg; 1/2 = 0. At the bottomk = 1), the kinematic
conditionw|,—_q = —udd/dxis imposed.

3.2 Timeintegration

The spatial discretization, explained in the previousieagtields a system of or-
dinary differential equations as given by Egs. (17), (22),)(and (32). For trans-
parency, we summarize the space-discretized momentunieagia

duy1/2k
;t/ =+ (LW 10k + (GXivajak + (GEA)i 1 1/26 = O (33)

and

d(Wi /2 +Wik_1/2)
dt

+2(G); + (L"W)j g2+ (L*W)i 1 p=0.  (34)
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In Egs. (33) and (34), the finite difference operatbtsandL" are linear and in-
clude approximations of the advection terms, whe@pandG2 are linear opera-
tors representing the gradientsdindirection of the water level and non-hydrostatic
pressure, respectively. The linear operd@grrefers to the compact scheme for the
vertical gradient of the non-hydrostatic pressure withiayaer.

For time discretization we use a linear combination of thelieit and implicit
Euler method, the so-calle@—method with@ lying between zero and unity. For
brevity, we denot@™® = 8¢™1+ (1— 6)¢" for some quantity with nindicating
the time level" = nAt whereAt is the time step. Fof = % we obtain the second
order Crank-Nicolson scheme and ®r= 0 and6 = 1 the first order explicit and
implicit Euler schemes are obtained, respectively. Fdrikity we take6 > %

Integration of Eq. (17) in time in a semi-implicit manner igie

grt-gn N Hin+1/2Uin++172 - Hin—l/ZUin—Jrl?Z B
At AX n

0. (35)

Based on the expressions fér+l/2, as given by (8), it can be shown that if the

time step is chosen such tMt|Uirjjl?2|/Ax <1 at every time step then the water

depthHin+1 is non-negative at every time step [28]. Hence, flooding nbappens
faster than one grid size per time step, which is physicaltyart. This implies that
the calculation of the dry areas does not need any specialréed-or this reason,
no complicated drying and flooding procedures as describdd7] and [1] are
required. For computational efficiency, the momentum dquoatare not solved and
velocities are set to zero if the water denﬁnl/z is below a threshold value. For

the examples in this study it equals Pam.
Eq. (21) is discretised fully implicitly in time, as follows

h_n;l - h'nk n+1 n+1
i, i,

D12k~ b 1/2k 1 1
A Ax + e~ Wik, =0 (36)

Concerning the momentum equations, time discretizatiGestplace by ex-
plicit time stepping for advection terms and semi-impligite stepping using the
6—scheme for both surface level and pressure gradients,las/l

u_f'l+1 —un
12k Yivl/2k
i+1/ o i+1/ +(Luun)i+l/2,k+(G;I(-Zn+0)i+1/2,k+(G>2(qn+0)i+1/2,k: 0 (37)
and
1 1
Wir:Lrl/Z_WP,Hl/Z i Wirj;rfl/z_w?,kfl/z +2Gg™ ),
At At A ik

+(LWWn)i,k+1/2 + (LWWn)i,kfl/Z =0. (38)
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3.3 Solution method

After the spatial and temporal discretization, the bothallycand globally mass

conserved solutioﬂ(i”“,qlr‘:jl/z, [‘:11/2 ka?Lll/z) of Egs. (35)-(38) is found in

two steps. First, the solutiofd""*, u* 1 /2,k) for hydrostatic flows is obtained with
conservation of global mass only. Note tm@[mk is not the final solution since

local mass is not conserved yet. Next, the solut(q’i‘hl/z, |n++11/2 k,\/\/I”L}l/z)
found such that local mass is conserved. In both steps, agtimj method is ap-
plied, where correction to the velocity fields for the chamngeespectively water
level and non-hydrostatic pressure is incorporated. Thgption method is a well-
established predictor-corrector approach for solving itttompressible Navier-
Stokes equations and is usually referred to as the pressueetion technique [17].
To find the globally but not necessarily locally mass coneselrs&olutlonLJI”E}2
is replaced by
1
/2= A z h|+1/2 KU1 2k (39)
i+1/2 k=

and instead of Eq. (35), we now have

0* o*
Zi"+1—Zi”+ |+l/2U|n++1/2 HI 1/2U|nJ?L/2

At AX

=0 (40)

with UM€" = 6U* + (1~ 8)U". Furthermorey,; , , is the solution of the follow-
ing equation '
un

U 12k~ Yha/2k
% (LW a2k (G )1 ok (GRAY)iy1/26 = 0. (41)

Note that Eq. (41) contains the non-hydrostatic pressuteegtreceding time level
so thatu* will not satisfy Eq. (36). Egs. (40) and (41) are solved usarredictor-
corrector procedure as follows. An estimate of thie-velocity, denoted ag**, is
made that does not satisfy Eq. (40). This is achieved by mebsaslving Eq. (41)
with the best available guess for the water level,

un

U ok = Yik/2k
% + (LU 12+ (GRCMiy 1okt (GE i1 2k = 0. (42)

Next, a correction is computed involving the water level@ofvs. An expression
for u* is obtained by substracting Eq. (42) from Eg. (41), to give

U g0k = Ui 1ok — 90At(GRAL)it1 2k (43)

with A = "1 — Z" the surface level correction. The principle of the projeti
method is thatA{ must be such that* is the solution of Eq. (40) so that mass
conservation for each water column is obtained. Multipdyig. (43) withhi"ﬂ/2 "
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summing it from bottom to free surface and substituting itp (40) gives

AL go°At
A_tl B AX ( I+1/2(G AZ)I+1/2_ i— 1/2(G AZ) 1/2) —

K
< z h r1/2uUis 12k~ z h| 126U 12, k)
_9

( LYk — irll/ZUirll/Z)' (44)

For each point, we thus have an equation fAi;, A{;_1 andA{ 1. The resulting

tri-diagonal system of equations is solved directly by themas algorithm [17].
Once the water levg]""! and the intermediate velocity componeitare deter-

mined, a prediction for the intermediate vertical velogityis computed by using

Eq. (38) with the best known non-hydrostatic pressjite

- Win,k+1/2 + Wiikfl/Z - Win,k—1/2

At At

Wiki1/2

+2(G");i x

F(LW); g0+ (LW 1/ =0. (45)

The computed velocitie@*, w*) will not accurately fulfil the local continuity equa-
tion (36) and the non-hydrostatic pressure must be corteaot@chieve this. The
velocities can then be modified accordingly. In deriving gnation for the solution

of pressure correctiod\q = g™ — g", Egs. (41) and (45) are substracted from Egs.
(37) and (38), respectively, resulting in

U2k Uaok
i+ I+1/2,
At =+ 6(GZA0)i11/2k =0, (46)
whil o —we
L2 U 4 20(GoAG) k=0, (47)

whereby the differencwf‘k 12 Wi*‘kfl/Z is neglected. Based on an analysis, it
appears that this neglect does not affect the modeling ehtidispersion [35]. Sub-
stitution of Egs. (46) and (47) into Eq. (36) using expresgib?) gives a Poisson

equation forAq,

QA'[ -
~ X (h.nill/z (GEAQ);1/2K— hrjll/z,k(G?(Aq)ifl/Z,k)

GAtdz:‘kH/Z/ax [

1
. (h-“+1+h”+1 ) i1 (GRAQ)is1/24+ (GRAQ)i—1/2x) +
ik i,k+1

et ((GEAQ)is 1241+ (G§AQ)i71/2,k+1)}
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- 0AtIZ ),/ 0x [

2(h.”+1 +h-”+1) W ((GRA)is1/2k-1+ (GRAD)i_1/2k-1) +
i k—1 i,k

hn;:ll ((G)Z(Aq)Hl/z,k + (GiAq)ifl/Z,k)}

—20At [(GAQ)i k — (GADik-1] =

1+ 1 * N+l %
- AX (h?jl/Z,kuiH/Z,k - hinjl/z,kuifl/z,k)

1 1
*—xzazﬂﬁ;l/z o xzﬁz‘iq,;r—l/z

Yiirre —gx  Yik-12 T gy
- (Wik,k+l/2 - Wik,kfl/Z) : (48)
OnceAq is obtained, we can calculatéjll/zlk andm{ﬁjl/z, respectively, through

Egs. (46) and (47). Local mass is conserved.

The matrix of (48) is a non-symmetric discrete Laplacian eodtains 15 non-
zero diagonals. For the solution, we adopt the BICGSTAB m@{l34] precondi-
tioned with the incomplete LU factorizations: ILU [23] andMJ (Modified ILU)
[13]. Based on several numerical experiments, an optimutindrconvergence rate
is found by taking 55% of MILU and 45% of ILU. It has been obsaththat the
pressure correction is slowly time varying. This suggdsés there is no need for
the system of equations (48) to be preconditioned at every §tep. Since precon-
ditioning is relative expensive with respect to amount ofkyonuch CPU-time can
be saved by preconditioning the system every ten to twemty $iteps, as suggested
by our experiments.

The overall solution for a time step can be summarized as\ist

1. Start the sequence by taking the unkno@hau", w", g, either initially or from
the previous time level.

. Solve Eq. (42) to obtain**.

. Solve Eq. (44) to obtain the correctidd for water level.

4. Correct the water level and horizontal velocity by medn&o! ="+ AZ, Eq.
(43) foru*.

. Solve Eq. (45) to obtaiw*.

. Solve the Poisson equation (48) to obtain the corredipn

7. Update the non-hydrostatic pressure and velocitieggugih® = q" + Aq, Eq.

(46) foru™* and Eq. (47) fom™ 1,
8. Update the relative vertical velocity, 1 /> from Eg. (12).

[CSIN\S)

o O1
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4 Numerical Experiments

Our main interest concerns the simulation of transfornmatibnon-linear waves
over rapidly varying bathymetry in coastal zones. The preseethod using the
compact scheme is validated by applying it to a number of dases for which
experimental data exist. Concerning the range of applitabf the model to values
of kH, indicating the relative importance of linear wave dispmrsresults of our
numerical analysis, as depicted in Fig. 5, suggest that &yers are sufficient to

o
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=
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15
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Fig. 5 Normalized wave celerity vs relative depth for linear disp@n. Non-hydrostatic model
with two layers (circles), exact (solid line), relative @ri(dashed line). The quantities = \/gH
andc are the long wave celerity and the wave phase velocity, otispd/, and the relative error is
|Ccomputed— Cexac{/ Cexact

compute linear dispersive waves upkbl < 7 (typical for coastal areas) with a
relative error of at most 1%. Hence, only two equidistanelayare therefore taken
in the present numerical experiments.

Simulations of breaking waves and wave run-up are presémtbis section. Not
only regular waves on a plane sloping bed that are well doateden the literature
will be validated but also irregular waves over a barred sisisore profile. In the
test cases discussed, different types of wave breakers/fm gffshore wave char-
acteristics and beach slope are given, notably, spillimgdpminant on flat slopes
of beaches) and plunging (predominant on steep slopeskdnedetails may be
foundin [12].

While, the cross-shore motion is the main issue in this stoalgulation of wave
shoaling, refraction and diffraction around a shoal in tvasitontal dimensions is
also discussed in this section. This relatively computimgnsive application aims
among other things at assessing the computational costiggrant per time step.
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The numerical results presented below have been publishptevious work;
see [29, 35, 36].

4.1 Regular wave breaking on a slope

A number of regular wave experiments on plane slopes weferpezed by Hansen
and Svendsen [14]. The experiments were conducted in a wawe flvith a plain
slope of 1:34.26. The waves were generated at a depth of 0.86smcond order
Stokes wave at the toe of the slope is imposed. The wave hisi@ht cm and the
period is 2.0s. In this case the breaker type is spilling.elsaries of the surface
elevation were taken at a number of locations along the fldime simulation period
of 120s has been carried out with a time step of 0.05s. Theofidstr implicit Euler
scheme for time integration is appliel € 1). The 15m flume is covered with 600
grid cells with a gridsize of 0.025m.

Fig. 6 shows the comparison between the measured and dattwave height
and mean free surface (the slope starts=8m). The agreement for wave height is

H [cm], 10 x E[n] [cm]
& O
k

o)

x [m]

Fig. 6 Computed wave height (upper trend) and set-up (lower treod)pared to data from
Hansen and Svendsen [14] for regular spilling breaker.dPtesethod (solid line), experiment
(circles, diamonds).

quite good. Also, the model predicts both shoaling and tfsitipn of the breaking
point correctly. The set-up tends to be underpredictedestend of the breaking
point. Furthermore, the model could not reproduce the steme shift of the set-
up relative to the breaking point. These observed deficgsnare believed to be
attributed to a relative inaccurate vertical distributmfithe horizontal velocity in
the breaking zone, since only two layers are adopted hetis.rialy be improved
by adding more layers, possibly combined with a turbulenodeh Still, with the
present model using two layers, the trend of both wave heigtitset-up is consis-
tently fairly well predicted.
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4.2 Periodic wave run-up on a planar beach

An analytical solution for periodic wave run-up on a planeps by Carrier and
Greenspan [8] is used to verify the accuracy of the shoretingement calcula-
tion. This classical test has been used frequently for asgpshe quality of vari-

ous shoreline boundary condition techniques used in the/e§uations; see e.g.,
[16, 20].

A sinusoidal wave with height of 0.006 m and period of 10 s gp@igating over a
beach with slope 1:25. The maximum still water depth is 0.Brthe numerical ex-
periment, a grid spacing @x=0.04 m and and a time step£4f=0.05s is employed.
This time step has been chosen so that the water depth isegative everywhere.
Furthermoref = 1 is chosen. The computational flume has a length of 2 incident
wavelengths. Only one layer is adopted here. Since, thedise effects are rel-
atively small, the non-hydrostatic pressure is not inctudethe depth-averaged
calculation. No wave breaking occurs.

Comparison between the computed free surface envelopéarahalytical so-
lution is plotted in Fig. 7. Good agreement is obtained betwie computed and

0.025
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0.015

0.01

0.005

n [m]
o

-0.005

-0.01

-0.015

-0.02

-0.025

-12 -10 -8 -6 -4 -2 0
x [m]

Fig. 7 Computed envelope of surface elevations compared to tHgtimahsolution for the peri-
odic wave run-up on a planar beach. Present method (so&}l timeory (dashed line).

theoretical values. This also holds for the horizontal nmoest of the shoreline as
demonstrated in Fig. 8.
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Fig. 8 Computed horizontal shoreline movement compared to thigtésa solution for the peri-
odic wave run-up on a planar beach. Present method (so&}l timeory (dashed line).

4.3 Regular breaking waves over a submerged bar

In Ref. [10], an overview is given of the physical tests ofukeg waves over a sub-
merged trapezoidal bar in a wave flume. The description oéxperimental set-up
for the bar tests can also be found in Ref. [2]. These tests bagn used frequently
for the evaluation of the performance of various Boussiftgpg wave models. In
particular, the bound higher harmonics generated on theatgpalope of the bar
become free behind the bar, resulting in an irregular wattepa This puts heavy
demands on the accuracy of the computed dispersion reléfioreover, contrary
to breaking on a slope, the position of incipient wave breglon the horizontal
part of the bar is more difficult to be detected by breakingation criteria usually
employed in Boussinesq-type models [11].

The computational flume has a length of 30m. The still watgatidés 0.4m,
which is reduced to 0.1 m at the bar. The offshore slope is ar2Dthe shoreward
slope is 1:10. The geometry is depicted in Fig. 9 where thelaegvave enters
from the left ¢&=0m). Three measurement conditions have been considefé&@]in
of which one of them is discussed here, namely fairly longevaith a wave period
of 2.525s and a wave height of 2.9cm. Spilling breakers haem lbbserved in the
region between 13.3m (station 6) and 15.3m (station 8); Eeethe snapshot of
surface elevation shown in Fig. 9.

In the numerical experiment, a grid spacing4x®=0.05m and a time step of
At=0.01s is employed. The duration of the simulation is setGs # = 1), so
that the higher harmonics will reach the farthest statioglan before the end of
the computation. At the outgoing boundary, the depth at #eeb with a slope of
1:25 (starting ak=25m) has been limited to 0.2m, so that Sommerfeld radiation
condition (7) for long waves can be applied.
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Fig. 9 A snapshot of the free surface and bottom geometry with iocaif wave gauges for the
test of submerged bar.

Comparisons between the measurements and the results adrtiputations at
different locations are plotted in Fig. 10. Good agreemioth in magnitude and
phase, is obtained between computed surface elevationtharabserved values.
It can be seen further that the nonlinear shoaling procesglisdescribed by the
proposed model. Also, the breaking zone between statiord@aim which wave
heights on top of the bar are decreased significantly, iesgmted well. Finally, the
dispersion of the free waves behind the bar is predictee quet|.

4.4 Irregular wave breaking in a laboratory barred surf zone

The laboratory flume test of Boers [4] is considered, in whatdom, uni-directional
waves propagate towards a bar-trough beach profile that d@sted from an ac-
tual barred sandy beach (see Fig. 11). The origin ofthaxis is at the beginning
of the slope. During the experiments, physical parametetiseé surf zone such as
wave heights and periods have been collected based on treuraddree surface
elevations at 70 locations. In Ref. [4] a number of wave ctos with different sig-
nificant wave heights and peak periods for generated intidaves are considered.
In this study, a case with a relatively low wave steepnesgavivaves break in the
shallow region only is discussed. The breaker type appedrs weakly plunging.

At the offshore boundary, an irregular wave is imposed withgignificant wave
height of 0.103m and the peak period of 3.33s. The grid sizetiso 0.025m and
the time step is taken as 0.025s. The simulation time is s&7@@s. Since, only
permanent waves occlt,= 1 is chosen for time discretization.

In Fig. 12, spectral comparisons with the numerical andriatooy data are made.
The spatial evolution of the wave spectra is characterizedrbamplification of
spectral levels at both sub- and super-harmonic rangesistent with three-wave
interaction rules, followed by a transformation toward adat spectral shape in the
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Fig. 10 Computed surface elevations at several stations compart tmeasured ones for the
wave over submerged bar. Present method (solid line), empst (circles).

surf zone, attributed to the nonlinear couplings and dét&ip. The present numer-
ical method captures the dominant features of the attersgettral evolution, both
in the shoaling region and the surf zone. Nevertheless, ftmrbreaker bar and
further, the wave energy is slightly overestimated, inipatar the high-frequency
part. Apart from this small defect, the numerical model prtdthe transforma-
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Fig. 11 A snapshot of the free surface and bathymetry of the labgréitone experiment of Boers
[4].

tion of wave energy through the flume where the amount of gnerghe short
waves reduces, whereas the amount of energy in the long Wwareases. Note the
slight overestimation of the energy density in the low-frency part akk =26m
andx =28m, which might be due to the reflection of infragravity waiegainst the
offshore boundary.

4.5 Deformation of waves by an élliptic shoal on sloped bottom

Deformation of waves by a shoal on plane sloping bed is vegrésting because
of practical importance in the context of surf zone dynairficem a physical point
of view, this wave transformation is challenging, becatisevtaves are ondergoing
shoaling, refraction, diffraction and nonlinear dispensiThe experiment conducted
by Berkhoff et al. [3] has served as a standard test case fifying several numer-
ical wave models [11].

The simulations are considered in a rectangle bigsig) : —10<x<10,—10<
y < 20] with a plane slope of 1/50 on which an elliptic shoal is ressee Fig. 13. Let
(X,¥') be the slope-oriented coordinates which are related t@xhe coordinate
system by means of rotation oveR(C°. The still water depth without shoal is given
in meters by

0.45, fory < —5.484
H= . (49)
max0.10,0.45— (5.484+y)/50), fory > —5.484

Instead of shoreline boundary, a minimum depth of 10cm isleyegl to prevent
breaking waves. The boundary of the shoal is given by
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Fig. 12 Computed (thin line) and measured (thick line) energy dgmsgiectra at different stations
for the irregular wave over bar-trough profile. All spectiselequally spaced frequency intervals

and are filtered.
X y
(Z) ; (g) 1, (50)

whereas the thickness of the shoal is
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Fig. 13 Bathymetry corre- 20
sponding to the experiment of
Berkhoff et al. [3].
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Monochromatic waves with wave height of 4.64cm and waveopeadf 1.0s
are generated at lower boundary=- —10m. The upper boundary,= 20m, is of
the outflow type where Sommerfeld radiation condition (7gpglied. The left and
right boundaries are insulated and the free-slip conditame imposed.

For the present model, the grid size in both directions iss6t05m. The time
step is taken as 0.01s and the simulation period is set tos@0that a steady-state
is reached) = 1). SincekH ~1.9 in front of the domain, which is relatively large,
only computation with two equidistant layers is carried.out

To get an impression, the computation was carried out onBit64MD proces-
sor (1.8 GHz, 4MB L2 cache) with 4GByte internal memory. Cadenpilation is
achieved using Intel Fortran90 compiler 9.1 with the defaptimization. The total
CPU time per grid point per time step required was aboyts20

Profiles of the computed normalized wave height along fandects, which are
the most compelling ones, are given in Fig. 14 and compar#dthe experimental
data. The variation of the waves in cross direction repitasgithe effects of com-
bined refraction and diffraction is predicted fairly wed shown by the comparison
of the computed and measured profiles along sections 2 antiescdmparison
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Fig. 14 Computed and measured relative wave heights along différ@msects for the wave over
elliptic shoal. Present method (solid line), experimeirc(es).

along sections 6 and 7 indicates that both shoaling and souysf waves are very
well predicted by the present model.

5 Conclusions

A computational method for calculating the conventionatlivear shallow water
equations, including non-hydrostatic pressure has bessepted. For accuracy rea-
sons, the pressure is split-up into hydrostatic and nomdsidtic parts. In the model
presented, the water depth is divided into a number of teiffidiowing layers and
the governing equations are integrated in each layer. Nlegtsecond order com-
pact scheme is applied that enables to approximate shoe davamics with a
very limited number of vertical grid points. Simple (sermplicit second order
finite differences are employed and are based upon a classacmered grid. In
addition, advection terms in the momentum equations areoappated such as to
fulfil a proper momentum conservation, which is crucial focarate computation
of energy losses in a wave breaking process. Initiation @sdation of breaking
waves can be described adequately by this method. This ndods| not require
any sort of tunable or empirical parameters. Semi-imptiaite stepping is done
in combination with projection methods, where correctiothte velocity fields for
the change in both surface elevation and non-hydrostagigsprre is incorporated.
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Finally, the algorithm utilizes a simple and numericallgtde procedure yielding
non-negative water depths with which an accurate repragentof the shoreline
motion is obtained.

The present method has been employed to model the maindsaifisurf zone
dynamics, such as nonlinear shoaling, breaking of wavesvaw run-up with
good agreement between predictions and observations. dtelwan be applied in
practical applications that comprise areas with spatiakdtisions of the order of 10
to 100 wave lengths, particularly in the vicinity of the cbds the near future, the
model will be coupled to a spectral wave model that can baeghph a scale of the
order of 106-1000 wave lengths.
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