
Numerical modeling of wave propagation,
breaking and run-up on a beach

G.S. Stelling and M. Zijlema

Abstract A numerical method for free-surface flow is presented at the aim of study-
ing water waves in coastal areas. The method builds on the nonlinear shallow water
equations and utilizes a non-hydrostatic pressure term to describe short waves. A
vertical boundary-fitted grid is used with the water depth divided into a number of
layers. A compact finite difference scheme is employed that takes into account the
effect of non-hydrostatic pressure with a few number of vertical layers. As a result,
the proposed technique is capable of simulating relativelyshort wave propagation,
where both frequency dispersion and nonlinear shoaling play an important role, in
an accurate and efficient manner. Mass and momentum are strictly conserved at dis-
crete level while the method only dissipates energy in the case of wave breaking.
A simple wet-dry algorithm is applied for a proper calculation of wave run-up on
the beach. The computed results show good agreement with analytical and labora-
tory data for wave propagation, transformation, breaking and run-up within the surf
zone.

1 Introduction

Wave transformation in the surf zone plays an important rolein coastal engineer-
ing since, nearshore waves are the driving forces for many nearshore phenomena,
such as longshore currents, water level set-up, sedimentation, erosion, and coastal-
structure loading. Surf zones are characterised by the irreversible transformation of
organized wave motion of the incident short, wind-generated waves into motions of
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different types and scales e.g., turbulence and low-frequency motion (well-known
as the ”surf-beat”). The main features associated with the transformation of coastal
waves across a surf zone are illustrated in Fig. 1. (SWL denotes the still water level.)
In the pre-breaking region, wave transformation is described by the effects of wave

set−down

set−up

SHOALING BREAKER ZONE RUN−UP

SWL

Fig. 1 Wave transformation across a typical surf zone.

steepness due to the nonlinearity (or amplitude dispersion) and wave shortness due
to the frequency dispersion. The front face of a wave will steepen continuously un-
til the front becomes vertical. Therefore, the frequency and amplitude dispersion
effects must balance each other, so that waves of finite amplitude and permanent
form are possible [31]. The bathymetric variations in shallow water distort this bal-
ance and cause instabilities and subsequent wave breaking.Once the wave breaks,
turbulence is generated and becomes a dominating feature ofthe flow field. The
wavebreaker-generated turbulence balances the steepening of the front and stabi-
lizes the surface profile [31]. The broken waves propagate with a gradual change of
form and resemble steady bores. At the end, they become relatively long and run up
on the beach. The run-up starts when the bore reaches the shoreline corresponding
to a stage of the motion with no water in front of the bore.

The simulation of broken waves and wave run-up amounts to thesolution of the
nonlinear shallow water (NLSW hereinafter) equations for free-surface flow with-
out viscosity terms in a depth-integrated form [16, 21, 32, 5, 19]. These hyperbolic
equations are mathematically equivalent to the Euler equations for compressible
flows. Discontinuities are admitted through the weak form ofthese equations and
can take the form of bores which are the hydraulic equivalentof shock waves in
aerodynamics. The conservation of energy does not hold across the discontinuities
but the conservation of mass and momentum remains valid. By considering the sim-
ilarity between broken waves and steady bores, energy dissipation due to turbulence
generated by wave breaking is inherently accounted for [16,5].

In the pre-breaking region, however, the NLSW equations do not hold since,
they assume a hydrostatic pressure distribution. These equations prohibit a correct
calculation of frequency-dispersive or short waves. Moreover, they predict that the
front face of any wave or bore will steepen continuously until a vertical front is
formed. Only the deviations from hydrostatic pressure can balance the steepening
of the front and stabilize the surface profile before it becomes vertical. In this study,
we discuss an extension of the NLSW equations to include the effect of vertical
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acceleration so that the propagation of short, nonlinear waves with finite amplitudes
can be simulated.

A main difficulty occuring in the simulation of free-surfaceflows is the proper
handling of a moving free surface since this is part of the solution itself. Many
methods for the treatment of the free surface are described in the literature. The most
well-known ones are the Marker-and-Cell (MAC) method [15],the Volume-of-Fluid
(VOF) method [18] and the level-set method [30]. An overviewof these methods
can be found in [25]. Although, these techniques can describe wave overturning in a
very accurate manner, they yield more detailed informationthan necessary for many
coastal engineering applications. Moreover, they are too computing intensive when
applied to the large-scale wave evolution in the surf zone.

A much simpler approach is the one in which the free-surface motion is tracked
using a single-valued function of the horizontal plane as done in the NLSW method-
ology. Recently, the development of so-called non-hydrostatic models using this
approach has been a popular topic of many ocean and coastal modeling activities.
Well-known papers on this subject are Casulli and Stelling [9] and Stansby and Zhou
[26]. The models in these papers consist of the NLSW equations with the addition
of a vertical momentum equation and non-hydrostatic pressure in horizontal mo-
mentum equations. As such, the total pressure is decomposedinto hydrostatic and
non-hydrostatic components. The underlying motivation for this approach is that
existing shallow water packages need to be adapted slightlyonly, since the correc-
tion to the hydrostatic pressure is done after the NLSW equations have been solved.
As a consequence, this reduces the effort of software extension and maintenance
to a minimum. Also, Mahadevan et al. [22] have shown that thistechnique leads
to a more stable and efficient non-hydrostatic calculation than in the case without
splitting the pressure into hydrostatic and non-hydrostatic parts. Moreover, the non-
hydrostatic models require much fewer grid cells in the vertical direction than the
MAC and VOF methods. These benefits make simulations of wave transformation
in coastal waters much more feasible and efficient. There is,however, still ongoing
research on this approach. The choice of an appropriate numerical approach for a
non-hydrostatic free-surface flow model appears to be non-trivial. Several different
solution procedures (fractional step versus pressure-correction approach, modeling
of the free-surface boundary condition, Cartesian versusσ−coordinates, etc.) have
been proposed by different authors; for an overview, see [35] and the references
therein.

Another issue that remains to be discussed is wave breaking.In principle, non-
hydrostatic models represent a good balance between nonlinearity (enables wave
shoaling) and frequency dispersion (corrects celerity of shoaling wave) so that initi-
ation of the wave breaking process and the associated energylosses can be described
adequately by these models. However, most of the well-established non-hydrostatic
models, [22, 9, 26], are by no means momentum-conservative.It is evident that the
numerical schemes involved must treat shock propagation adequately in order to
model broken waves in the surf zone. Traditionally, the shock-capturing schemes
applied to shallow water flows at collocated grids are based on the Godunov-type
approach, where a discontinuity in the unknown variables (water depth and dis-
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charge) is assumed at the cell edges and a Riemann solver is employed to compute
the flux across the cell interface [33]. Applications of thisapproach to the NLSW
equations are given e.g., in Ref. [19, 6, 20]. However, this method suffers of four
main shortcomings. First, in the case of variable topography, a numerical imbalance
may occur, resulting in an artificial flow, caused by inconsistent approximation of
the flux-gradients and source terms due to the bottom slope. Secondly, this tech-
nique often uses explicit time integration. As a consequence, time steps may be
very small due to the CFL condition related to the shallow depth. Thirdly, although,
extension to higher dimensions (> 2) by the common local dimensionally split ap-
proach is trivial, it is disputable. Finally, extension of the Godunov-type methods to
non-hydrostatic flows is non-trivial.

To our knowledge, no papers have been published on the simulation of surf zone
phenomena involving breaking waves and wave run-up employing NLSW equations
including non-hydrostatic pressure. The reason for this isprobably of a historical
nature. Traditionally, the effect of non-hydrostatic pressure is taken into account by
a Boussinesq-type approximation through adding higher order derivative terms to
the NSLW equations [24]. As such, the Boussinesq-type wave models are based on
an efficient depth-integrated formulation and have become very popular for real-life
applications involving wave dynamics in coastal regions and harbours. One of the
main challenges in the development of the Boussinesq-type models is the accurate
simulation of wave propagation from deep water through the surf zone. Because
such models are strictly valid only for fairly long waves, there have been attempts
to improve frequency dispersion that may complicate the underlying formulation.
Since then a continual extension of Boussinesq theory has been ongoing with recent
advances in its application to highly nonlinear waves and deeper water. See Ref. [11]
for a survey of the field. In addition, because of the approximations involved it may
not be guaranteed that the Boussinesq-type wave models can predict the onset of
wave breaking and its energy losses correctly. It seems thatstrict energy dissipation
can only be proven by adding a dissipation model to the Boussinesq equations; see
[11] and the references quoted there.

The purpose of the present work is to report on the experiences that have been
gathered in the development of a non-hydrostatic model for coastal waves in the
surf zone. We apply an implicit finite difference method for staggered grids as de-
scribed in [28], originally developed for modeling subcritical flows in, e.g. coastal
seas, lakes and estuaries (see, e.g. [27]). The rationale behind this approach is that
a discretized form of the NLSW equations can automatically be shock-capturing
if the momentum conservation is retained in the numerical scheme. As a conse-
quence, this simple and efficient scheme is able to track the actual location of wave
breaking and compute the associated energy dissipation without the aid of analytical
solutions for bore approximation or empirical formulations for energy dissipation.
In order to resolve the frequency dispersion up to an acceptable level of accuracy
using as few layers as possible, a technique as proposed in [29] is employed that
is tailored to wave propagation applications. It is based ona compact difference
scheme for the approximation of vertical gradient of the non-hydrostatic pressure.
Unlike Boussinesq-type wave models, which rely on higher order derivative terms
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for better dispersion characteristics, the present model improves its frequency dis-
persion by increasing the number of vertical layers rather than increasing the order
of derivatives of the dependent variables. Hence, it contains at most second order
spatial derivatives. Therefore, the second order accuratefinite difference approxi-
mations are considered to be sufficiently accurate from a numerical point of view.
For the calculation of wave run-up on the beach, use of movingboundary conditions
is required. Several numerical strategies have been proposed for a proper represen-
tation of the interface of water and land. We refer to [1, 7] for overviews on this
subject. In the present work, a very simple approach as treated in [28] is adopted.
This method tracks the motion of the shoreline very accurately without posing nu-
merical instabilities by ensuring non-negative water depths.

2 Governing Equations

We consider a two-dimensional wave motion in the vertical plane. The waves are
assumed to approach perpendicular to the beach. The physical domain represented
in a Cartesian coordinate system(x,z) is bounded vertically by the free-surface level
above the reference plane,z= ζ (x,t), and the bottom level measured from the refer-
ence plane positively downwards,z= −d(x). Furthermore,t is the time. The water
depth isH = ζ + d. See Fig. 2.

d

plane of reference H

ζ

Fig. 2 Water area with free surface and bottom.

The governing equations are the Euler equations for the flow of an incompress-
ible, inviscid fluid with a constant densityρ0, given by

∂u
∂x

+
∂w
∂z

= 0, (1)
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∂u
∂ t

+
∂u2

∂x
+

∂wu
∂z

+
g
ρ0

∂ζ
∂x

+
1
ρ0

∂q
∂x

= 0, (2)

∂w
∂ t

+
∂uw
∂x

+
∂w2

∂z
+

1
ρ0

∂q
∂z

= 0, (3)

whereu(x,z,t) andw(x,z,t) are the mean velocity components in the horizontalx−
and verticalz−direction, respectively,g is the acceleration of gravity,q(x,z,t) is the
non-hydrostatic pressure. For convenience, we chooseρ0 = 1. For accuracy reasons,
the total pressure has been split into two components, i.e. hydrostatic,g(ζ − z),
and non-hydrostatic,q; for details see, e.g. Ref. [9] and [35]. Next, the kinematic
conditions are given by

w|z=ζ =
∂ζ
∂ t

+u
∂ζ
∂x

, w|z=−d = −u
∂d
∂x

. (4)

To compute the free surface, we integrate Eq. (1) over the water depthH and
use the kinematic condition at the free surface (4), giving the following free-surface
equation

∂ζ
∂ t

+
∂Q
∂x

= 0, Q≡UH =

∫ ζ

−d
udz (5)

with Q the flow rate andU the depth-averaged horizontal velocity.
To get a unique solution, proper numbers and types of boundary conditions are

required at all boundaries of the physical domain considered. We distinguish four
types of boundaries: i) free surface, ii) bottom, iii) offshore and iv) onshore. In prin-
ciple, one normal and one tangential component of the velocity and/or stress are
imposed at these boundaries. At the free surface, we assume no wind (tangential
stress) andq|z=ζ = 0 (normal stress). At the bottom, we assume no bottom friction
(tangential stress) and the normal velocity is imposed through the kinematic condi-
tion (4). Because of continuity, the dischargeUH must equalcgζ , with cg the group
velocity [11]. For arbitrary depths, we have

cg = n
ω
k

, n =
1
2

(

1+
2kH

sinh 2kH

)

, (6)

whereω andk are the angular frequency and the wave number, respectively, of the
first input harmonic. Thus, we impose the depth-averaged velocityU = nωζ/kH at
the offshore boundary. Finally, we may consider two types ofthe onshore condition.
The moving shoreline, in the case of calculation of wave run-up on the beach, re-
quires a numerical treatment which will be outlined in Sect.3.2. In the pre-breaking
zone, an artificial outflow condition is imposed. Usually, the so-called Sommerfeld
radiation condition is employed, which allows the (long) waves to cross the outflow
boundary without reflections [11]. This condition is given by

∂ f
∂ t

+c
∂ f
∂x

= 0, (7)
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where f represents the surface elevation or the tangential velocity andc is the wave
phase velocity equalsc =

√
gH for long waves.

The set of equations (1)−(3), (5) can be considered as mass- and momentum-
conservative NLSW equations with the inclusion of the vertical acceleration. These
equations are valid in both pre-breaking and breaking regions describing nonlinear
shoaling, breaking, dissipation after breaking and run-upof waves.

3 Numerical Framework

The numerical framework is briefly presented and discussed.Distinction is made
between space and time discretizations as treated in Sect. 3.1 and 3.2, respectively,
after which the solution technique is outlined in Sect. 3.3.

3.1 Space discretization

3.1.1 Grid schematization

The physical domain is discretized by employing a structured grid. A distinction is
made between the definition of the grid in the horizontal and vertical direction. In the
horizontal planes, we consider a regular grid{xi+1/2 |xi+1/2 = i∆x, i = 0, ..., I}with
∆x the length of the cell. The location of the cell centre is given by xi = (xi−1/2 +
xi+1/2)/2. In the vertical direction, a boundary-fitted grid is employed. The domain
is divided intoK layers. The interface between two layers is denoted aszk+1/2(x,t)
with k = 0, ...,K. The layer thickness is defined ashk = zk+1/2−zk−1/2 = fkH with
0≤ fk ≤ 1 and∑

k
fk = 1; see Fig. 3. The water levelzK+1/2 = ζ and the bottom level

z1/2 = −d are located atx = xi . As a consequence,H = ζ +d is given in pointi and
the water depth at a cell vertex is not uniquely defined. The water depth ati +1/2 is
denoted aŝH and its approximation depends on the direction ofQi+1/2, i.e. the flow
rate normal to the face of the water columni +1/2, as follows,

Ĥi+1/2 =







Hi , if Qi+1/2 > 0
Hi+1 , if Qi+1/2 < 0
max(ζi ,ζi+1)+min(di ,di+1) , if Qi+1/2 = 0

. (8)

The approximation of̂Hi+1/2 in case ofQi+1/2 = 0 is heuristically based and appears
to be very robust. For consistency, we have

zi+1/2,1/2 =







−di , if Qi+1/2 > 0
−di+1 , if Qi+1/2 < 0
−min(di ,di+1) , if Qi+1/2 = 0

(9)
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k+1/2

z      =K+1/2 ζ

z    = -d1/2

z3/2

hk

zk-1/2

z

Fig. 3 Vertical grid definition with layer interfaces.

and

zi+1/2,K+1/2 =







ζi , if Qi+1/2 > 0
ζi+1 , if Qi+1/2 < 0
max(ζi ,ζi+1) , if Qi+1/2 = 0

(10)

and
zi+1/2,k+1/2 = zi+1/2,k−1/2+ fk Ĥi+1/2 , k = 1, ...,K −1. (11)

This completes our description of the grid.
The vertical grid schematization gives rise to the definition of the vertical velocity

with respect to the moving layer interfaces. The vertical velocity relative to layer
interfacezk+1/2, denoted asωk+1/2, is defined as the difference between the vertical
velocity along the streamline and the vertical velocity along the interface, as follows,

ωk+1/2 = w(zk+1/2)−
∂zk+1/2

∂ t
−u(zk+1/2)

∂zk+1/2

∂x
. (12)

The kinematic boundary conditions, in terms of relative vertical velocity, areω1/2 =
ωK+1/2 = 0.

3.1.2 Location of grid variables

A staggered grid arrangement is used in which the velocity componentsu andw
are located at the centers of the cell faces(i +1/2,k) and(i,k+1/2), respectively.
The water levelζ is located ati. Concerning the non-hydrostatic pressureq, two
ways to assign this unknown to grid points may be employed. This variable can
be given either at the cell center(i,k) or at the face(i,k+ 1/2). The choice de-
pends on the discretization of the vertical pressure gradient, namely, explicit central
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differences and an edge-based compact finite difference scheme [17], respectively.
Since, the present work deals with the application to wave propagation, only the lat-
ter discretization will be considered [29]. The former approximation is particularly
meant for applications where vertical structures are important e.g., stratified flows
with density currents. Likew, the relative vertical velocityω is located at the face
(i,k+1/2). Fig. 4 shows the staggered grid layout.

Fig. 4 Arrangement of the
unknowns in a staggered grid.

w, ω

u

x

z

q
k

k−1/2

k+1/2

i+1/2i−1/2 i

Unknowns not present at points where they are required are computed by inter-
polation using the fewest number of interpolation points unless stated otherwise. So,
ϕx

i indicates arithmetic averaging of the unknownϕ in x−direction over their two
points of definition that are nearest toi. The unknownϕ not given at layer interface
zk+1/2 is approximated at this interface as

ϕz
k+1/2 = ϕ(zk+1/2) ≈

ϕkhk+1 + ϕk+1hk

hk +hk+1
. (13)

Note thatϕz
k = (ϕk+1/2 + ϕk−1/2)/2 since, arithmetic averaging inside a layer is

exact. Finally,ϕxz
i,k gives the average value ofϕ at (i,k) resulting from the two one-

dimensional interpolation formulas in each direction.
Space discretization of the governing equations is carriedout in a finite vol-

ume/finite difference fashion. For each unknown, we define a collection of a finite
number of non-overlapping control volumes that covers the whole domain. Each un-
known, except the water level, is considered as volume-averaged and is at the centre
of its control volume,

ui+1/2,k =
1

ĥi+1/2,k

∫ zk+1/2

z=zk−1/2

u|x=xi+1/2
dz, wi,k+1/2 =

1
hi,k+1/2

∫ zk+1

z=zk

w|x=xi dz,

qi,k+1/2 =
1

hi,k+1/2

∫ zk+1

z=zk

q|x=xi dz (14)



10 G.S. Stelling and M. Zijlema

with
ĥi+1/2,k = fk Ĥi+1/2 (15)

and

hi,k+1/2 =
1
2
(hi,k +hi,k+1) . (16)

3.1.3 Space discretization of global continuity equation

A global mass conservative approximation of Eq. (5) is givenby

dζi

dt
+

Ĥi+1/2Ui+1/2− Ĥi−1/2Ui−1/2

∆x
= 0 (17)

with

Ui+1/2 =
1

Ĥi+1/2

K

∑
k=1

ui+1/2,kĥi+1/2,k . (18)

3.1.4 Space discretization of local continuity equation

The space discretization of Eq. (1) consists of two steps. First, this equation is inte-
grated vertically over its control volume and thereafter, an appropriate finite differ-
ence scheme is applied to each horizontal term of the equation. The layer-averaged
continuity equation (1) for layer 1≤ k ≤ K is obtained using the Leibniz’ rule, as
follows,

∫ zk+1/2

zk−1/2

(

∂u
∂x

+
∂w
∂z

)

dz=
∂hkuk

∂x
−u

∂z
∂x

∣

∣

∣

∣

zk+1/2

zk−1/2

+wk+1/2−wk−1/2 = 0. (19)

By virtue of (12), this equation becomes

∂hk

∂ t
+

∂hkuk

∂x
+ ωk+1/2−ωk−1/2 = 0, (20)

so that the total amount of water in a moving cell with thicknesshk is conserved.
Discretization of Eq. (20) inx−direction gives

dhi,k

dt
+

φi+1/2,k−φi−1/2,k

∆x
+ ωi,k+1/2−ωi,k−1/2 = 0 (21)

with
φi+1/2,k = ĥi+1/2,kui+1/2,k . (22)
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3.1.5 Space discretization of horizontal momentum equation

Again, the space discretization of Eq. (2) consists of two steps as outlined in
Sect. 3.1.4. The derivation of layer-averaging of the termsin Eq. (2) is given in
[35] and will not be repeated here. The layer-averagedu−momentum equation in
conservative form reads

∂hkuk

∂ t
+

∂hku2
k

∂x
+uz

k+1/2ωk+1/2−uz
k−1/2ωk−1/2

+ ghk
∂ζ
∂x

+
∂hkq

z
k

∂x
−qk+1/2

∂zk+1/2

∂x
+qk−1/2

∂zk−1/2

∂x
= 0. (23)

A spatial discretization of Eq. (23) is given by

dh
x
i+1/2,kui+1/2,k

dt
+

ûi+1,kφx
i+1,k− ûi,kφx

i,k

∆x

+uz
i+1/2,k+1/2ωx

i+1/2,k+1/2−uz
i+1/2,k−1/2ωx

i+1/2,k−1/2

+gh
x
i+1/2,k

ζi+1− ζi

∆x
+

hi+1,kq
z
i+1,k−hi,kq

z
i,k

∆x

−qx
i+1/2,k+1/2

zi+1,k+1/2−zi,k+1/2

∆x
+qx

i+1/2,k−1/2

zi+1,k−1/2−zi,k−1/2

∆x
= 0.(24)

The one-sided second order upwind scheme is used to approximateû at (i,k) [17],

ûi,k =







3
2ui−1/2,k− 1

2ui−3/2,k , if φx
i,k ≥ 0

3
2ui+1/2,k− 1

2ui+3/2,k , if φx
i,k < 0

. (25)

This scheme generates a limited amount of numerical dissipation which is sufficient
to effectively suppress spurious waves with wavelength 2∆x. These undesired wave
components are due to nonlinearities.

Since, the velocity componentu is the primitive variable and notφ = hu, Eq.
(24) is not appropriate for further implementation. For thereformulation, we first
consider the discretized form of Eq. (20) in point(i +1/2,k),

dh
x
i+1/2,k

dt
+

φ x
i+1,k−φx

i,k

∆x
+ ωx

i+1/2,k+1/2−ωx
i+1/2,k−1/2 = 0. (26)

Multiplying Eq. (26) withui+1/2,k and substracting the result from Eq. (24), after

which it is divided byh
x
i+1/2,k, yields
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dui+1/2,k

dt
+

1

h
x
i+1/2,k

(

φx
i+1,k(ûi+1,k−ui+1/2,k)−φx

i,k(ûi,k−ui+1/2,k)

∆x

)

+
ωx

i+1/2,k+1/2

h
x
i+1/2,k

(uz
i+1/2,k+1/2−ui+1/2,k)−

ωx
i+1/2,k−1/2

h
x
i+1/2,k

(uz
i+1/2,k−1/2−ui+1/2,k)

+g
ζi+1− ζi

∆x
+

1

h
x
i+1/2,k

(

hi+1,kq
z
i+1,k−hi,kq

z
i,k

∆x

)

−
qx

i+1/2,k+1/2

h
x
i+1/2,k

zi+1,k+1/2−zi,k+1/2

∆x
+

qx
i+1/2,k−1/2

h
x
i+1/2,k

zi+1,k−1/2−zi,k−1/2

∆x
= 0. (27)

Eq. (27) guarantees conservation of momentum and is thus valid for simulation of
breaking waves. Note that Eq. (27) does not contain a bed slope source term. Hence,
transition from sub- to supercritical flows near steep bed slopes can be computed
correctly.

3.1.6 Space discretization of vertical momentum equation

The final discretizedw−momentum equation can be derived in exactly the same
manner as done for theu−momentum equation except for the pressure gradient.
The equation is given by

dwi,k+1/2

dt
+

φz
i+1/2,k+1/2

2h
z
i,k+1/2

wi+1,k+1/2−wi,k+1/2

∆x

+
φz

i−1/2,k+1/2

2h
z
i,k+1/2

wi,k+1/2−wi−1,k+1/2

∆x

+
ωz

i,k+1

2h
z
i,k+1/2

(wi,k+3/2−wi,k+1/2)+
ωz

i,k

2h
z
i,k+1/2

(wi,k+1/2−wi,k−1/2)

+
1

h
z
i,k+1/2

∫ zk+1

zk

∂q
∂z

|idz= 0. (28)

Note that central differences have been used in Eq. (28), i.e.,

ŵi+1/2,k+1/2 =
1
2
(wi,k+1/2 +wi+1,k+1/2) . (29)

Since, the accuracy of the frequency dispersion for relative short waves strongly
depends on the discretization of vertical motion, we apply asecond order compact
scheme for the approximation of the vertical gradient of non-hydrostatic pressure,
allowing very few vertical grid points with relatively low numerical dispersion and
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dissipation [17]. Firstly, we consider thew−momentum equation atzk+1/2, Eq. (28),
in which the pressure gradient∂q/∂z is approximated through backward differenc-
ing and subsequent thew−momentum equation atzk−1/2 where the approximation
of ∂q/∂z is obtained by means of forward differencing. Thereafter, we take the av-
erage of the discretizedw−momentum equations atzk−1/2 andzk+1/2 onto the layer
k. Thus, the integral of pressure gradient in Eq. (28) is approximated by means of
backward differencing,

1

h
z
i,k+1/2

∫ zk+1

zk

∂q
∂z

|idz=
q(zi,k+1)−q(zi,k)

h
z
i,k+1/2

≈
qi,k+1/2−qi,k−1/2

hi,k
. (30)

The w−momentum equation at interfacezk−1/2 is obtained from Eq. (28) by de-
creasing the indexk by 1. However, the integral of pressure gradient is evaluated
using forward differencing. This gives

1

h
z
i,k−1/2

∫ zk

zk−1

∂q
∂z

|idz=
q(zi,k)−q(zi,k−1)

h
z
i,k−1/2

≈
qi,k+1/2−qi,k−1/2

hi,k
. (31)

Finally, we take the average of thew−momentum equations at interfaceszk−1/2 and
zk+1/2, giving

d(wi,k+1/2 +wi,k−1/2)

2dt
+

1
2

(

(Lww)i,k+1/2 +(Lww)i,k−1/2

)

+
qi,k+1/2−qi,k−1/2

hi,k
= 0

(32)
with Lw the discrete operator representing advection terms as outlined before. Due
to the use of the compact scheme, Eq. (32) contains two time derivatives forw.

It must be emphasized that Eq. (32) is solved for layers 2≤ k≤ K, i.e. including
the free surface, but excluding the bottom. Conditionq|z=ζ = 0 can be readily in-
corporated in Eq. (32) fork= K asqi,K+1/2 = 0. At the bottom (k= 1), the kinematic
conditionw|z=−d = −u∂d/∂x is imposed.

3.2 Time integration

The spatial discretization, explained in the previous section, yields a system of or-
dinary differential equations as given by Eqs. (17), (21), (27) and (32). For trans-
parency, we summarize the space-discretized momentum equations:

dui+1/2,k

dt
+(Luu)i+1/2,k +(G1

xζ )i+1/2,k +(G2
xq)i+1/2,k = 0 (33)

and

d(wi,k+1/2 +wi,k−1/2)

dt
+2(Gzq)i,k +(Lww)i,k+1/2 +(Lww)i,k−1/2 = 0. (34)
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In Eqs. (33) and (34), the finite difference operatorsLu andLw are linear and in-
clude approximations of the advection terms, whereasG1

x andG2
x are linear opera-

tors representing the gradients inx−direction of the water level and non-hydrostatic
pressure, respectively. The linear operatorGz refers to the compact scheme for the
vertical gradient of the non-hydrostatic pressure within alayer.

For time discretization we use a linear combination of the explicit and implicit
Euler method, the so-calledθ−method withθ lying between zero and unity. For
brevity, we denoteϕn+θ = θϕn+1+(1−θ )ϕn for some quantityϕ with n indicating
the time leveltn = n∆ t where∆ t is the time step. Forθ = 1

2 we obtain the second
order Crank-Nicolson scheme and forθ = 0 andθ = 1 the first order explicit and
implicit Euler schemes are obtained, respectively. For stability, we takeθ ≥ 1

2.
Integration of Eq. (17) in time in a semi-implicit manner yields

ζ n+1
i − ζ n

i

∆ t
+

Ĥn
i+1/2U

n+θ
i+1/2− Ĥn

i−1/2U
n+θ
i−1/2

∆x
= 0. (35)

Based on the expressions forĤi+1/2, as given by (8), it can be shown that if the

time step is chosen such that∆ t|Un+θ
i+1/2|/∆x ≤ 1 at every time step then the water

depthHn+1
i is non-negative at every time step [28]. Hence, flooding never happens

faster than one grid size per time step, which is physically correct. This implies that
the calculation of the dry areas does not need any special feature. For this reason,
no complicated drying and flooding procedures as described in [27] and [1] are
required. For computational efficiency, the momentum equations are not solved and
velocities are set to zero if the water depthĤi+1/2 is below a threshold value. For
the examples in this study it equals 10−5 m.

Eq. (21) is discretised fully implicitly in time, as follows,

hn+1
i,k −hn

i,k

∆ t
+

φn+1
i+1/2,k−φn+1

i−1/2,k

∆x
+ ωn+1

i,k+1/2−ωn+1
i,k−1/2 = 0. (36)

Concerning the momentum equations, time discretization takes place by ex-
plicit time stepping for advection terms and semi-implicittime stepping using the
θ−scheme for both surface level and pressure gradients, as follows,

un+1
i+1/2,k−un

i+1/2,k

∆ t
+(Luun)i+1/2,k +(G1

xζ n+θ )i+1/2,k +(G2
xq

n+θ )i+1/2,k = 0 (37)

and

wn+1
i,k+1/2−wn

i,k+1/2

∆ t
+

wn+1
i,k−1/2−wn

i,k−1/2

∆ t
+2(Gzq

n+θ )i,k

+(Lwwn)i,k+1/2 +(Lwwn)i,k−1/2 = 0. (38)
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3.3 Solution method

After the spatial and temporal discretization, the both locally and globally mass
conserved solution(ζ n+1

i ,qn+1
i,k+1/2,u

n+1
i+1/2,k,w

n+1
i,k+1/2) of Eqs. (35)−(38) is found in

two steps. First, the solution(ζ n+1
i ,u∗i+1/2,k) for hydrostatic flows is obtained with

conservation of global mass only. Note thatu∗i+1/2,k is not the final solution since

local mass is not conserved yet. Next, the solution(qn+1
i,k+1/2,u

n+1
i+1/2,k,w

n+1
i,k+1/2) is

found such that local mass is conserved. In both steps, a projection method is ap-
plied, where correction to the velocity fields for the changein respectively water
level and non-hydrostatic pressure is incorporated. The projection method is a well-
established predictor-corrector approach for solving theincompressible Navier-
Stokes equations and is usually referred to as the pressure correction technique [17].

To find the globally but not necessarily locally mass conserved solution,Un+1
i+1/2

is replaced by

U∗
i+1/2 =

1

Ĥn
i+1/2

K

∑
k=1

ĥn
i+1/2,ku

∗
i+1/2,k , (39)

and instead of Eq. (35), we now have

ζ n+1
i − ζ n

i

∆ t
+

Ĥn
i+1/2U

n+θ∗
i+1/2− Ĥn

i−1/2U
n+θ∗
i−1/2

∆x
= 0 (40)

with Un+θ∗
= θU∗+(1−θ )Un. Furthermore,u∗i+1/2,k is the solution of the follow-

ing equation

u∗i+1/2,k−un
i+1/2,k

∆ t
+(Luun)i+1/2,k +(G1

xζ n+θ )i+1/2,k +(G2
xq

n)i+1/2,k = 0. (41)

Note that Eq. (41) contains the non-hydrostatic pressure atthe preceding time level
so thatu∗ will not satisfy Eq. (36). Eqs. (40) and (41) are solved usinga predictor-
corrector procedure as follows. An estimate of theu∗−velocity, denoted asu∗∗, is
made that does not satisfy Eq. (40). This is achieved by meansof solving Eq. (41)
with the best available guess for the water level,

u∗∗i+1/2,k−un
i+1/2,k

∆ t
+(Luun)i+1/2,k +(G1

xζ n)i+1/2,k +(G2
xq

n)i+1/2,k = 0. (42)

Next, a correction is computed involving the water level as follows. An expression
for u∗ is obtained by substracting Eq. (42) from Eq. (41), to give

u∗i+1/2,k = u∗∗i+1/2,k−gθ∆ t(G1
x∆ζ )i+1/2,k (43)

with ∆ζ ≡ ζ n+1− ζ n the surface level correction. The principle of the projection
method is that∆ζ must be such thatu∗ is the solution of Eq. (40) so that mass
conservation for each water column is obtained. Multiplying Eq. (43) withĥn

i+1/2,k,
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summing it from bottom to free surface and substituting intoEq. (40) gives

∆ζi

∆ t
− gθ 2∆ t

∆x

(

Ĥn
i+1/2(G

1
x∆ζ )i+1/2− Ĥn

i−1/2(G
1
x∆ζ )i−1/2

)

=

− θ
∆x

(

K

∑
k=1

ĥn
i+1/2,ku

∗∗
i+1/2,k−

K

∑
k=1

ĥn
i−1/2,ku

∗∗
i−1/2,k

)

−1−θ
∆x

(

Ĥn
i+1/2U

n
i+1/2− Ĥn

i−1/2U
n
i−1/2

)

. (44)

For each pointi, we thus have an equation for∆ζi , ∆ζi−1 and∆ζi+1. The resulting
tri-diagonal system of equations is solved directly by the Thomas algorithm [17].

Once the water levelζ n+1 and the intermediate velocity componentu∗ are deter-
mined, a prediction for the intermediate vertical velocityw∗ is computed by using
Eq. (38) with the best known non-hydrostatic pressureqn,

w∗
i,k+1/2−wn

i,k+1/2

∆ t
+

w∗
i,k−1/2−wn

i,k−1/2

∆ t
+2(Gzq

n)i,k

+(Lwwn)i,k+1/2 +(Lwwn)i,k−1/2 = 0. (45)

The computed velocities(u∗,w∗) will not accurately fulfil the local continuity equa-
tion (36) and the non-hydrostatic pressure must be corrected to achieve this. The
velocities can then be modified accordingly. In deriving an equation for the solution
of pressure correction,∆q≡ qn+1−qn, Eqs. (41) and (45) are substracted from Eqs.
(37) and (38), respectively, resulting in

un+1
i+1/2,k−u∗i+1/2,k

∆ t
+ θ (G2

x∆q)i+1/2,k = 0, (46)

wn+1
i,k+1/2−w∗

i,k+1/2

∆ t
+2θ (Gz∆q)i,k = 0, (47)

whereby the differencewn+1
i,k−1/2 −w∗

i,k−1/2 is neglected. Based on an analysis, it
appears that this neglect does not affect the modeling of linear dispersion [35]. Sub-
stitution of Eqs. (46) and (47) into Eq. (36) using expression (12) gives a Poisson
equation for∆q,

−θ∆ t
∆x

(

ĥn+1
i+1/2,k(G

2
x∆q)i+1/2,k− ĥn+1

i−1/2,k(G
2
x∆q)i−1/2,k

)

+
θ∆ t∂zn+1

i,k+1/2/∂x

2
(

hn+1
i,k +hn+1

i,k+1

)

[

hn+1
i,k+1

(

(G2
x∆q)i+1/2,k +(G2

x∆q)i−1/2,k
)

+

hn+1
i,k

(

(G2
x∆q)i+1/2,k+1+(G2

x∆q)i−1/2,k+1
)

]
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−
θ∆ t∂zn+1

i,k−1/2/∂x

2
(

hn+1
i,k−1 +hn+1

i,k

)

[

hn+1
i,k

(

(G2
x∆q)i+1/2,k−1 +(G2

x∆q)i−1/2,k−1
)

+

hn+1
i,k−1

(

(G2
x∆q)i+1/2,k +(G2

x∆q)i−1/2,k
)

]

−2θ∆ t
[

(Gz∆q)i,k− (Gz∆q)i,k−1
]

=

− 1
∆x

(

ĥn+1
i+1/2,ku

∗
i+1/2,k− ĥn+1

i−1/2,ku
∗
i−1/2,k

)

+u∗i,k+1/2
xz∂zn+1

i,k+1/2

∂x
−u∗i,k−1/2

xz∂zn+1
i,k−1/2

∂x

−
(

w∗
i,k+1/2−w∗

i,k−1/2

)

. (48)

Once∆q is obtained, we can calculateun+1
i+1/2,k andwn+1

i,k+1/2, respectively, through
Eqs. (46) and (47). Local mass is conserved.

The matrix of (48) is a non-symmetric discrete Laplacian andcontains 15 non-
zero diagonals. For the solution, we adopt the BiCGSTAB method [34] precondi-
tioned with the incomplete LU factorizations: ILU [23] and MILU (Modified ILU)
[13]. Based on several numerical experiments, an optimum inthe convergence rate
is found by taking 55% of MILU and 45% of ILU. It has been observed that the
pressure correction is slowly time varying. This suggests that there is no need for
the system of equations (48) to be preconditioned at every time step. Since precon-
ditioning is relative expensive with respect to amount of work, much CPU-time can
be saved by preconditioning the system every ten to twenty time steps, as suggested
by our experiments.

The overall solution for a time step can be summarized as follows:

1. Start the sequence by taking the unknownsζ n, un, wn, qn, either initially or from
the previous time level.

2. Solve Eq. (42) to obtainu∗∗.
3. Solve Eq. (44) to obtain the correction∆ζ for water level.
4. Correct the water level and horizontal velocity by means of ζ n+1 = ζ n+∆ζ , Eq.

(43) foru∗.
5. Solve Eq. (45) to obtainw∗.
6. Solve the Poisson equation (48) to obtain the correction∆q.
7. Update the non-hydrostatic pressure and velocities using qn+1 = qn + ∆q, Eq.

(46) forun+1 and Eq. (47) forwn+1.
8. Update the relative vertical velocityωk+1/2 from Eq. (12).
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4 Numerical Experiments

Our main interest concerns the simulation of transformation of non-linear waves
over rapidly varying bathymetry in coastal zones. The present method using the
compact scheme is validated by applying it to a number of testcases for which
experimental data exist. Concerning the range of applicability of the model to values
of kH, indicating the relative importance of linear wave dispersion, results of our
numerical analysis, as depicted in Fig. 5, suggest that two layers are sufficient to
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Fig. 5 Normalized wave celerity vs relative depth for linear dispersion. Non-hydrostatic model
with two layers (circles), exact (solid line), relative error (dashed line). The quantitiesc0 =

√
gH

andc are the long wave celerity and the wave phase velocity, respectively, and the relative error is
|ccomputed−cexact|/cexact.

compute linear dispersive waves up tokH ≤ 7 (typical for coastal areas) with a
relative error of at most 1%. Hence, only two equidistant layers are therefore taken
in the present numerical experiments.

Simulations of breaking waves and wave run-up are presentedin this section. Not
only regular waves on a plane sloping bed that are well documented in the literature
will be validated but also irregular waves over a barred cross-shore profile. In the
test cases discussed, different types of wave breakers for given offshore wave char-
acteristics and beach slope are given, notably, spilling (predominant on flat slopes
of beaches) and plunging (predominant on steep slopes) breakers. Details may be
found in [12].

While, the cross-shore motion is the main issue in this study, calculation of wave
shoaling, refraction and diffraction around a shoal in two horizontal dimensions is
also discussed in this section. This relatively computing-intensive application aims
among other things at assessing the computational cost per grid point per time step.
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The numerical results presented below have been published in previous work;
see [29, 35, 36].

4.1 Regular wave breaking on a slope

A number of regular wave experiments on plane slopes were performed by Hansen
and Svendsen [14]. The experiments were conducted in a wave flume with a plain
slope of 1:34.26. The waves were generated at a depth of 0.36m. A second order
Stokes wave at the toe of the slope is imposed. The wave heightis 3.6cm and the
period is 2.0s. In this case the breaker type is spilling. Time series of the surface
elevation were taken at a number of locations along the flume.The simulation period
of 120s has been carried out with a time step of 0.05s. The firstorder implicit Euler
scheme for time integration is applied (θ = 1). The 15m flume is covered with 600
grid cells with a gridsize of 0.025m.

Fig. 6 shows the comparison between the measured and calculated wave height
and mean free surface (the slope starts atx=0m). The agreement for wave height is

0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

x [m]

H
 [c

m
], 

10
 ×

 E
[η

] [
cm

]

Fig. 6 Computed wave height (upper trend) and set-up (lower trend)compared to data from
Hansen and Svendsen [14] for regular spilling breaker. Present method (solid line), experiment
(circles, diamonds).

quite good. Also, the model predicts both shoaling and the position of the breaking
point correctly. The set-up tends to be underpredicted shoreward of the breaking
point. Furthermore, the model could not reproduce the shoreward shift of the set-
up relative to the breaking point. These observed deficiencies are believed to be
attributed to a relative inaccurate vertical distributionof the horizontal velocity in
the breaking zone, since only two layers are adopted here. This may be improved
by adding more layers, possibly combined with a turbulence model. Still, with the
present model using two layers, the trend of both wave heightand set-up is consis-
tently fairly well predicted.
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4.2 Periodic wave run-up on a planar beach

An analytical solution for periodic wave run-up on a plane slope by Carrier and
Greenspan [8] is used to verify the accuracy of the shorelinemovement calcula-
tion. This classical test has been used frequently for assessing the quality of vari-
ous shoreline boundary condition techniques used in the NLSW equations; see e.g.,
[16, 20].

A sinusoidal wave with height of 0.006m and period of 10s is propagating over a
beach with slope 1:25. The maximum still water depth is 0.5m.In the numerical ex-
periment, a grid spacing of∆x=0.04m and and a time step of∆ t=0.05s is employed.
This time step has been chosen so that the water depth is non-negative everywhere.
Furthermore,θ = 1 is chosen. The computational flume has a length of 2 incident
wavelengths. Only one layer is adopted here. Since, the dispersive effects are rel-
atively small, the non-hydrostatic pressure is not included in the depth-averaged
calculation. No wave breaking occurs.

Comparison between the computed free surface envelope and the analytical so-
lution is plotted in Fig. 7. Good agreement is obtained between the computed and
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Fig. 7 Computed envelope of surface elevations compared to the analytical solution for the peri-
odic wave run-up on a planar beach. Present method (solid line), theory (dashed line).

theoretical values. This also holds for the horizontal movement of the shoreline as
demonstrated in Fig. 8.
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Fig. 8 Computed horizontal shoreline movement compared to the analytical solution for the peri-
odic wave run-up on a planar beach. Present method (solid line), theory (dashed line).

4.3 Regular breaking waves over a submerged bar

In Ref. [10], an overview is given of the physical tests of regular waves over a sub-
merged trapezoidal bar in a wave flume. The description of theexperimental set-up
for the bar tests can also be found in Ref. [2]. These tests have been used frequently
for the evaluation of the performance of various Boussinesq-type wave models. In
particular, the bound higher harmonics generated on the upward slope of the bar
become free behind the bar, resulting in an irregular wave pattern. This puts heavy
demands on the accuracy of the computed dispersion relation. Moreover, contrary
to breaking on a slope, the position of incipient wave breaking on the horizontal
part of the bar is more difficult to be detected by breaking initiation criteria usually
employed in Boussinesq-type models [11].

The computational flume has a length of 30m. The still water depth is 0.4m,
which is reduced to 0.1m at the bar. The offshore slope is 1:20and the shoreward
slope is 1:10. The geometry is depicted in Fig. 9 where the regular wave enters
from the left (x=0m). Three measurement conditions have been considered in[10]
of which one of them is discussed here, namely fairly long wave with a wave period
of 2.525s and a wave height of 2.9cm. Spilling breakers have been observed in the
region between 13.3m (station 6) and 15.3m (station 8); see also the snapshot of
surface elevation shown in Fig. 9.

In the numerical experiment, a grid spacing of∆x=0.05m and a time step of
∆ t=0.01s is employed. The duration of the simulation is set to 40s (θ = 1), so
that the higher harmonics will reach the farthest station at21m before the end of
the computation. At the outgoing boundary, the depth at the beach with a slope of
1:25 (starting atx=25m) has been limited to 0.2m, so that Sommerfeld radiation
condition (7) for long waves can be applied.
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Fig. 9 A snapshot of the free surface and bottom geometry with location of wave gauges for the
test of submerged bar.

Comparisons between the measurements and the results of thecomputations at
different locations are plotted in Fig. 10. Good agreement,both in magnitude and
phase, is obtained between computed surface elevations andthe observed values.
It can be seen further that the nonlinear shoaling process iswell described by the
proposed model. Also, the breaking zone between station 6 and 8, in which wave
heights on top of the bar are decreased significantly, is represented well. Finally, the
dispersion of the free waves behind the bar is predicted quite well.

4.4 Irregular wave breaking in a laboratory barred surf zone

The laboratory flume test of Boers [4] is considered, in whichrandom, uni-directional
waves propagate towards a bar-trough beach profile that was adopted from an ac-
tual barred sandy beach (see Fig. 11). The origin of thex−axis is at the beginning
of the slope. During the experiments, physical parameters in the surf zone such as
wave heights and periods have been collected based on the measured free surface
elevations at 70 locations. In Ref. [4] a number of wave conditions with different sig-
nificant wave heights and peak periods for generated incident waves are considered.
In this study, a case with a relatively low wave steepness where waves break in the
shallow region only is discussed. The breaker type appears to be weakly plunging.

At the offshore boundary, an irregular wave is imposed with the significant wave
height of 0.103m and the peak period of 3.33s. The grid size isset to 0.025m and
the time step is taken as 0.025s. The simulation time is set to1700s. Since, only
permanent waves occur,θ = 1 is chosen for time discretization.

In Fig. 12, spectral comparisons with the numerical and laboratory data are made.
The spatial evolution of the wave spectra is characterized by an amplification of
spectral levels at both sub- and super-harmonic ranges, consistent with three-wave
interaction rules, followed by a transformation toward a broad spectral shape in the
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Fig. 10 Computed surface elevations at several stations compared to the measured ones for the
wave over submerged bar. Present method (solid line), experiment (circles).

surf zone, attributed to the nonlinear couplings and dissipation. The present numer-
ical method captures the dominant features of the attendantspectral evolution, both
in the shoaling region and the surf zone. Nevertheless, fromthe breaker bar and
further, the wave energy is slightly overestimated, in particular the high-frequency
part. Apart from this small defect, the numerical model predicts the transforma-
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Fig. 11 A snapshot of the free surface and bathymetry of the laboratory flume experiment of Boers
[4].

tion of wave energy through the flume where the amount of energy in the short
waves reduces, whereas the amount of energy in the long wavesincreases. Note the
slight overestimation of the energy density in the low-frequency part atx =26m
andx =28m, which might be due to the reflection of infragravity waves against the
offshore boundary.

4.5 Deformation of waves by an elliptic shoal on sloped bottom

Deformation of waves by a shoal on plane sloping bed is very interesting because
of practical importance in the context of surf zone dynamics. From a physical point
of view, this wave transformation is challenging, because the waves are ondergoing
shoaling, refraction, diffraction and nonlinear dispersion. The experiment conducted
by Berkhoff et al. [3] has served as a standard test case for verifying several numer-
ical wave models [11].

The simulations are considered in a rectangle basin[(x,y) : −10≤ x≤ 10,−10≤
y≤ 20] with a plane slope of 1/50 on which an elliptic shoal is rested; see Fig. 13. Let
(x′,y′) be the slope-oriented coordinates which are related to the(x,y) coordinate
system by means of rotation over−20o. The still water depth without shoal is given
in meters by

H =







0.45, for y′ < −5.484

max(0.10,0.45− (5.484+y′)/50) , for y′ ≥−5.484
. (49)

Instead of shoreline boundary, a minimum depth of 10cm is employed to prevent
breaking waves. The boundary of the shoal is given by
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Fig. 12 Computed (thin line) and measured (thick line) energy density spectra at different stations
for the irregular wave over bar-trough profile. All spectra use equally spaced frequency intervals
and are filtered.

(

x′

4

)

+

(

y′

3

)

= 1, (50)

whereas the thickness of the shoal is
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Fig. 13 Bathymetry corre-
sponding to the experiment of
Berkhoff et al. [3].
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Monochromatic waves with wave height of 4.64cm and wave period of 1.0s
are generated at lower boundaryy = −10m. The upper boundary,y = 20m, is of
the outflow type where Sommerfeld radiation condition (7) isapplied. The left and
right boundaries are insulated and the free-slip conditions are imposed.

For the present model, the grid size in both directions is setto 0.05m. The time
step is taken as 0.01s and the simulation period is set to 30s,so that a steady-state
is reached (θ = 1). SincekH ≈1.9 in front of the domain, which is relatively large,
only computation with two equidistant layers is carried out.

To get an impression, the computation was carried out on a 64-bit AMD proces-
sor (1.8 GHz, 4MB L2 cache) with 4GByte internal memory. Codecompilation is
achieved using Intel Fortran90 compiler 9.1 with the default optimization. The total
CPU time per grid point per time step required was about 20µs.

Profiles of the computed normalized wave height along four transects, which are
the most compelling ones, are given in Fig. 14 and compared with the experimental
data. The variation of the waves in cross direction representing the effects of com-
bined refraction and diffraction is predicted fairly well as shown by the comparison
of the computed and measured profiles along sections 2 and 5. The comparison



Numerical modeling of wave propagation, breaking and run-up on a beach 27

−5 0 5
0

0.5

1

1.5

2

2.5
section 2 (y = 3m)

x [m]

re
la

tiv
e 

w
av

e 
he

ig
ht

−5 0 5
0

0.5

1

1.5

2

2.5
section 5 (y = 9m)

x [m]

re
la

tiv
e 

w
av

e 
he

ig
ht

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
section 6 (x = 2m)

y [m]

re
la

tiv
e 

w
av

e 
he

ig
ht

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
section 7 (x = 0m)

y [m]
re

la
tiv

e 
w

av
e 

he
ig

ht

Fig. 14 Computed and measured relative wave heights along different transects for the wave over
elliptic shoal. Present method (solid line), experiment (circles).

along sections 6 and 7 indicates that both shoaling and focussing of waves are very
well predicted by the present model.

5 Conclusions

A computational method for calculating the conventional nonlinear shallow water
equations, including non-hydrostatic pressure has been presented. For accuracy rea-
sons, the pressure is split-up into hydrostatic and non-hydrostatic parts. In the model
presented, the water depth is divided into a number of terrain-following layers and
the governing equations are integrated in each layer. Next,the second order com-
pact scheme is applied that enables to approximate short wave dynamics with a
very limited number of vertical grid points. Simple (semi-)implicit second order
finite differences are employed and are based upon a classical staggered grid. In
addition, advection terms in the momentum equations are approximated such as to
fulfil a proper momentum conservation, which is crucial for accurate computation
of energy losses in a wave breaking process. Initiation and cessation of breaking
waves can be described adequately by this method. This modeldoes not require
any sort of tunable or empirical parameters. Semi-implicittime stepping is done
in combination with projection methods, where correction to the velocity fields for
the change in both surface elevation and non-hydrostatic pressure is incorporated.
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Finally, the algorithm utilizes a simple and numerically stable procedure yielding
non-negative water depths with which an accurate representation of the shoreline
motion is obtained.

The present method has been employed to model the main features of surf zone
dynamics, such as nonlinear shoaling, breaking of waves andwave run-up with
good agreement between predictions and observations. The model can be applied in
practical applications that comprise areas with spatial dimensions of the order of 10
to 100 wave lengths, particularly in the vicinity of the coast. In the near future, the
model will be coupled to a spectral wave model that can be applied on a scale of the
order of 100−1000 wave lengths.
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