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Abstract

The purpose of this work is to point out the relevance of the Rankine-Hugoniot jump relations regarding

the numerical solution of the inviscid shallow water equations. To arrive at physically relevant solutions in

rapidly varied flow, it is of crucial importance that continuity of mass flux and momentum flux across a

steady discontinuity is fulfilled at the discrete level. By adopting this viewpoint, finite difference schemes

can be studied that may be well suited to solve shallow water flow problems involving discontinuities, while

they are not based on a characteristic decomposition of the governed hyperbolic equations. Three schemes

on staggered grids with either the water level or the water depth at the cell centre and the flow velocity

or the depth-integrated velocity at the cell interface are examined. They differ in (1) the character of the

transport velocity to bias the discretization of the advective acceleration term in the upwind direction, and

(2) the determination of the water depth at the cell face with which the depth-integrated velocity must

be linked to the flow velocity. A detailed analysis is provided and aimed at highlighting the necessity

of fulfilling the Rankine-Hugoniot jump conditions for preventing the odd-even decoupling problem. The

accuracy and robustness of three selected schemes is assessed by means of convergence tests, three idealized

1D test problems with exact solutions and a 1D laboratory experiment of the breaking, runup and rundown

of a solitary wave on a sloping beach. Numerical results reveal that schemes satisfying exactly the jump

conditions display improved performance over schemes which do not share this property. Also, these results

support strong evidence on the link between not fulfilling the jump conditions and the appearance of odd-

even oscillations.

Keywords: Shallow water equations, Finite difference schemes, Rankine-Hugoniot relations, Staggered

grids, Odd-even decoupling

1. Introduction1

The celebrated nonlinear shallow water equations have obtained widespread acceptance for modelling2

a rich variety of free surface flows in rivers, lakes, floodplains, coastal areas and continental shelves. Such3
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equations may lead to the formation and propagation of hydraulic discontinuities such as hydraulic jumps,4

tidal bores, and breaking waves in shallow water [1]. Widely used numerical methods for solving inviscid5

shallow water equations commonly respect the property of (strict) hyperbolicity of the equations, exploit6

the features of associated wave characteristics, and rely upon the fully conservative form of the governing7

equations with the water depth and the depth-integrated velocity as conserved variables. These methods8

are usually based on a time-explicit, finite volume discretization employing a cell-centred colocated grid9

arrangement with the aim of computing the inviscid flux at the midpoint of a cell face. Such methods10

are appropriate for capturing discontinuities in rapidly varied flows. In particular, the Godunov method11

employing approximate Riemann solvers of Roe [2] and HLL [3] has proven successful. A survey of this vast12

subject is given in LeVeque [4] and Toro [5].13

Although hyperbolic systems admit discontinuous solutions, hyperbolicity is usually the source of prob-14

lems that arise in developing a numerical scheme for the solution of the shallow water equations. One15

drawback of this property is related to the numerical imbalance between the pressure flux and the topogra-16

phy term that may appear in the case of discontinuous bed topography. This imbalance leads to artificial17

flows across sharp bottom gradients in water initially at rest. This numerical artifact may be overcome by18

constructing a well-balanced scheme that preserves certain kinds of steady state solutions [6–8]. A variety19

of numerical techniques to achieve the well-balanced property in the Roe and HLL methods is proposed in20

[9–13]. However, the development of well-balanced schemes can be rather difficult and such schemes are21

often found to lack robustness in real-life applications. Another difficulty is that strict hyperbolicity is lost if22

a dry bed is present [14]. Especially the Roe’s Riemann solver is not able to cope with problems that involve23

wet-dry fronts. In addition, dedicated measures are required to avoid non-negativity of the water depth in24

the case a wet region falling dry. They typically modify the cell variables at the cell face and subsequently25

the interface flux by means of a hydrostatic reconstruction [7].26

The numerical methods mentioned above target to exploit the hyperbolicity property of the governing27

equations featuring the propagation of wave-like disturbances along the characteristics with a finite speed.28

Where these characteristics intersect corresponds to a shock or discontinuity, which must satisfy the Rankine-29

Hugoniot jump relations [1]. They describe the relation between the flow states on both sides of the30

discontinuity that follow from conservation of mass and momentum. The jump conditions usually express31

continuity of mass flux and momentum flux across a steady discontinuity (i.e. the shock speed is zero).32

In this paper we will show that complying with these jump conditions at discretization level warrants the33

use of numerical schemes which are suitable to solve problems involving (steady) discontinuities, whereas34

they do not explicitly utilize the hyperbolicity property of the underlying equations. In this context, the35

flow variables are assumed to be constant in each grid cell or control volume, while treated as discontinuous36

across the edge of the cell/control volume. Yet it is of crucial importance that the constancy of mass and37

momentum fluxes across the discontinuity is fulfilled at the discrete level.38
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Motivated by this observation, any finite difference scheme can, in principle, be employed for the mod-39

elling of rapidly varied flows provided that the algebraic Rankine-Hugoniot relations, expressing the con-40

tinuity of mass flux and momentum flux across the volume edge, are fulfilled. The present study deals41

with finite difference schemes on staggered Cartesian grids. Such schemes are an attractive alternative to42

colocated finite volume Godunov-type schemes. The reasons are threefold. First, staggered schemes treat43

the inviscid flux componentwise and the hyperbolicity feature is ignored. Second, the associated spatial44

discretization provides simple and accurate approximations and can easily be combined with the implicit45

ADI-type splitting schemes [15, 16] and semi-implicit θ−methods [17, 18], which are the widely employed46

time integration techniques due to their large stability region and delicate balance between accuracy and low47

computational cost. Third, the staggered approach is successfully employed in coastal and ocean modelling48

of, among others, large-scale barotropic flows, storm surges, stratified flows, flood waves in rivers, inundation49

by tsunami waves, and morphodynamics in coastal areas in 2D and 3D (see, e.g. [18–22]).50

Staggered schemes are not only applicable to subcritical flows, but also suitable for rapidly varied flows.51

For example, the various staggered grid approaches of Zhou and Stansby [23], Stelling and Duinmeijer [24],52

Madsen et al. [25], Kramer and Stelling [26], Cui et al. [22], and Doyen and Gunawan [27] to solve shallow53

water equations yield accurate results for flows at high Froude numbers including hydraulic jumps and dam54

break problems. In the current work it is explained in detail why these methods are adequate for such flows.55

The objective of this paper is twofold. Firstly, it addresses a number of finite difference schemes on56

staggered grids for the solution of the one-dimensional, depth-integrated, inviscid shallow water equations.57

These 1D equations served as a basis for identifying a number of numerical issues to be discussed. The58

current work aims to analyze in-depth the spatial discretization of three staggered schemes, each with a59

different set of dependent variables, either primitive or conserved, in relation to the Rankine-Hugoniot jump60

conditions holding across discontinuities. This will shed light on conservation properties of the presented61

schemes. In this respect, it will be shown that the incompressibility constraint plays a key role in achieving62

enhanced accuracy and robustness.63

The second goal of the paper is to demonstrate how the Rankine-Hugoniot jump conditions can help64

suppress odd-even spurious modes that would otherwise occur in staggered schemes. In particular, the aim65

is to show that these conditions are necessary for preventing the odd-even decoupling problem. This turns66

out to be beneficial for the numerical accuracy and stability of the solution. This forms the basis of our claim67

that fulfilling the Rankine-Hugoniot relations is to be preferred over exploiting the hyperbolicity property68

of the governing equations with which a good finite difference scheme should comply.69

The rest of this paper is organized as follows. Section 2 briefly reviews the shallow water equations70

we wish to solve. In this context, it is important to emphasize that incompressibility is a key element in71

the formulation and discretization of the governing equations. In particular, the analogy with compressible72

Euler equations of gas dynamics is critically reviewed. The spatial discretization is treated first for a 1D73
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generic continuity equation in Section 3 and then, in Section 4, for the 1D shallow water equations, by means74

of a staggered approach, including additional analysis concerning the Rankine-Hugoniot relations. Section 575

outlines the aspects of time integration relevant for the scope of the present study. The performance of76

three selected schemes is assessed first by means of convergence tests and then by three idealized 1D tests77

involving flow discontinuities, for which the conservation of mass flux and momentum flux is crucial. In78

addition, a 1D laboratory experiment of the breaking, runup and rundown of a solitary wave on a sloping79

beach is used in the assessment. Numerical results are presented to display the comparison between the80

various schemes. These assessments and outcomes are dealt with in Section 6. Finally, in Section 7, the81

findings of this study are summarized, followed by a few practical comments upon the implementation of82

the discussed schemes in two dimensions.83

2. Governing equations84

We consider the shallow water flow with a free surface under gravity in a Cartesian coordinate system85

x = (x, y, z). This flow is confined by the surface elevation z = ζ(x, y, t) (positive upwards with respect86

to the datum level z = 0 with z−axis in the direction opposite to that of gravity) and the bed elevation87

z = −d(x, y) (positive downwards with respect to the datum level), and is uniform in depth. We restrict88

ourselves to incompressible flows governed by the depth-integrated continuity and momentum equations.89

The continuity equation is90

∂h

∂t
+∇ · hu = 0 (1)

where h(x, y, t) = ζ + d is the water depth and u(x, y, t) = (u, v) is the velocity vector with the depth-91

averaged components u and v along the x and y coordinates, respectively. The mass flux is given by hu.92

Note that in the two-dimensional space (x, y), the divergence operator∇ reduces to (∂/∂x, ∂/∂y). Eq. (1) is93

written in divergence form and expresses conservation of volume in the incompressible flow. The Lagrangian94

form of Eq. (1) reads95

Dh

Dt
= −h∇ · u (2)

with D/Dt = ∂/∂t + u · ∇ denoting the material derivative. Hence, changes in the water depth that move96

along with u are associated with divergence of the flow velocity u. This is the case with, for instance, spatial97

variations of the seabed.98

The momentum equation is99

∂q

∂t
+∇ ·

(

u⊗ q +
1

2
gh2I

)

= gh∇d (3)

where q = hu is the depth-integrated velocity (momentum per unit area normalised by the density), g is the100

gravitational acceleration, and I is the identity matrix. The momentum flux is given by u⊗ q+ 1

2
gh2I and101

the pressure is assumed to be hydrostatic. Eq. (3) merely maintains its conservative character in the absence102
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of the source term, i.e. the bed is supposed to be uniform. It is worth commenting that the depth-integrated103

velocity q in Eq. (3) and the mass flux hu in Eq. (1) are different in their role: the former is a storage104

quantity, whereas the latter one is a transport quantity.105

The continuity equation (1) and the momentum equation (3) are the well-known inviscid shallow water106

equations in strong conservation form for the solution of h and q being the conserved variables. Initially107

smooth h and q may become discontinuous within finite time. These shocks propagate at speeds determined108

by the Rankine-Hugoniot relations arising from the conservation of mass and momentum [4]. Various109

Godunov-type methods have been devised for the numerical solution of this system of nonlinear hyperbolic110

equations that is mathematically equivalent to the compressible Euler equations of gas dynamics [4, 5].111

Applications of approximate Riemann solvers to shallow water equations, such as Roe [2] and HLL [3], are112

found in, e.g. [9, 12–14, 28]. Furthermore, alternative methods have been proposed that avoid the necessity113

to solve a Riemann problem. Examples are the TVD-MacCormack scheme [29], the central-upwind method114

[6], the artificial viscosity approach [30], and energy stable schemes using numerical diffusion operators based115

on entropy variables [8]. Typically, the abovementioned methods employ colocated variable arrangement:116

both h and q are stored at the same set of grid nodes.117

For reasons that become clear later on, the preferred form of the shallow water equations for incompress-118

ible flow is119

∂ζ

∂t
+∇ · q = 0 (4)

120

∂hu

∂t
+∇ · (q ⊗ u) + gh∇ζ = 0 (5)

with the primitive variables ζ and u. These equations are written in weak conservation form without a121

splitting of the surface gradient into a pressure flux and a source term that includes the effect of the bed122

slope (cf. Eq. (3)). We thus refrain from using the hyperbolicity property. Nonetheless, for large-scale123

applications in coastal and ocean engineering, the governing equations are usually written in the following124

non-conservation form125

∂ζ

∂t
+∇ · hu = 0

126

∂u

∂t
+ (u · ∇) u = −g∇ζ

whereas other relevant forces should be included, such as the frictional forces (wind shear and bottom127

roughness) and the Coriolis force due to the Earth’s rotation. Different numerical methods have been128

proposed for the solution of these shallow water equations; see, e.g. [15–21, 31]. These methods all have129

in common that they employ staggered grids: the primitive variables are stored at alternate locations; the130

water level is stored at a cell centre, and the velocity is stored at a cell face. Using this variable storage131

arrangement is an effective way to avoid odd-even decoupling between the surface elevation and flow velocity.132
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Although the mathematical structure of Eqs. (1) and (3) is equivalent to that of the Euler equations of gas133

dynamics, being a system of hyperbolic conservation laws for which Godunov-type methods are applicable,134

a crucial difference is the physical behaviour of the flow field. The compressible Euler equations are classified135

as hyperbolic and examples of flows governed by these equations are unsteady sub- and supersonic flows136

and steady supersonic flows [32]. On the other hand, the inviscid shallow water equations have been derived137

from depth integration of the incompressible Euler equations and the associated flow behaviour is of elliptic138

nature due to the incompressibility constraint [32]. Much in the same way, Eqs. (4) and (5) are hyperbolic139

for unsteady flows and but elliptic for steady flows. Examples of the latter are rapidly varied steady flows140

(e.g. flow over a weir crest and flow through an orifice)1. Yet, for steady state solutions, the continuity141

equation (4) degenerates to a constraint ∇ · q = 0, i.e. the depth-integrated velocity is a solenoidal field.142

This constraint can be dealt with effectively by the use of staggered grids. This also applies for unsteady143

flows. Examples of (un)steady flows with sudden changes in the bathymetry will be presented in Section 6.3.144

Further to this, Eq. (3) is a transport equation for the variable q, which is the advected quantity, whereas145

u acts as transport velocity. This is also reflected in the second term of Eq. (3),146

∇ · (u⊗ q) = (u · ∇) q + h (∇ · u) u

where the first term on the right hand side is related to the background flow. The second term is closely147

linked to the change in the water depth along flow paths (viz. Eq. (2)), illustrating how the change in the148

depth-integrated velocity q and the change in the water depth h are intertwined. Yet Eqs. (1) and (3) are a149

set of hyperbolic equations, and thus attractive as they lend themselves to diagonalization yielding distinct150

variables along their characteristics.151

Eqs. (4) and (5), on the other hand, naturally describe the propagation of gravity waves as the essential152

terms are the surface gradient, i.e. the third term of Eq. (5), and the divergence of the mass flux, i.e.153

the second term of Eq. (4). Observe that the divergence term of Eq. (5) includes two parts, (q · ∇) u and154

(∇ · q) u, of which the second part is commonly related to the wave propagation (viz. Eq. (4)). Hence, the155

combination of terms (∇ · q) u and gh∇ζ in the momentum equation characterizes the wave-like propagation156

on top of the background flow. The first part of the divergence term represents advection in the background157

flow. This implies that the depth-averaged velocity u = q/h is transported by the mass flux q, like volume158

(or mass). This transported velocity u is thus the resolved variable of the depth-integrated momentum159

equation (5). This feature turns out to be beneficial for accuracy and stability as will be demonstrated in160

the current study.161

In this paper it is argued that the model based on Eqs. (4) and (5) can preserve shocks and discontinuities,162

if the underlying numerical scheme complies with some form of discrete conservation that enables to compute163

1The associated pressure distribution may not be hydrostatic in the region of curved flows.
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shocks with the correct speed. Yet, rather than conservation itself, it would be crucial for physical accuracy164

to employ a discrete form of the Rankine-Hugoniot jump conditions which relate the fluid states on both165

sides of a discontinuity. Thereby, a finite difference scheme that relies upon this type of conservation form166

is able to produce the correct weak solution to the aforementioned equations. This is the central theme of167

this paper.168

3. Finite difference schemes for a 1D generic continuity equation169

Before we outline various numerical methods for the solution of the shallow water equations, we first170

discuss the spatial discretization of a generic continuity equation to demonstrate the basic ideas of the171

different numerical approximations to follow with some useful observations. The numerical approach to the172

shallow water equations will be developed later in Section 4.173

A generic continuity equation is a special case of a conservation law (see [4]), and is given in one-174

dimensional form as follows175

∂c

∂t
+

∂uc

∂x
= 0

where c(x, t) is a conserved variable and u(x, t) is the flow velocity. This equation typically expresses176

conservation of quantity c (e.g. mass, volume, internal energy), implying that the rate of change of its177

amount within a closed surface is merely due to the flux f(c) = uc across the surface. If the net flux is zero,178

like in an isolated system, then c does not change over time.179

We define a computational grid in the x−space discretized in M grid cells. A part of this computational180

grid is depicted in Figure 1. Within this grid we have cell centres located at xm, with m = 1, ...,M , and

x

m+2m+1
m+1/2m−1/2

m

cell of point m

m−2 m−1

∆

Figure 1: A part of a 1D computational grid.

181

cell interfaces at xm+1/2, with m = 0, ...,M . We assume an equidistant grid with a constant grid size ∆x.182

The grid cells can be regarded as control volumes containing densities cm(t) ≈ c(xm, t). Their discrete183

values represent piecewise constant averages of the densities over the cells. Consequently, the densities are184

discontinuous across cell interfaces.185

The desired semi-discretized equation must reflect the conservation property in the sense that cm can only186

be reduced by moving some of it to neighbouring cells. Or its amount can be enlarged by moving something187

from neighbouring cells into cell m. Hence, the temporal variation of cm can be seen as in- and outflow188

through the cell interfaces. This is expressed in terms of a face flux fm+1/2 = f(cm+1/2) ≈ f(c(xm+1/2, t))189
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and naturally, we get the next balance principle190

∆x
dcm
dt

= fm−1/2 − fm+1/2 (6)

which yields the following semi-discretized formulation191

dcm
dt

+
fm+1/2 − fm−1/2

∆x
= 0

Note that the balance equation (6) can also be derived from the application of the finite volume method. This192

method is designed to obtain a correct weak solution through, among others, the conservation requirement193

[4, 33]. Although global conservation can easily be obtained with any finite volume scheme, due to the194

natural cancellation of fluxes in the interior of the domain, the question remains how to determine the195

numerical flux at the cell interface, as the density c is not known at the cell interfaces. This is the central196

issue being addressed in the finite volume method: to express the cell-face value in terms of cell-centre values.197

Interpolation thus determines the variation of the conserved quantity c between cell centroids. Below, we198

will see that the choice of interpolation will affect both accuracy and stability of the numerical method.199

This is particularly the case for hyperbolic PDEs with discontinuous solutions. On the contrary, global200

conservation proves to be more relevant to a convection-diffusion type equation for which the option of flux201

interpolation is less critical anyway. This is especially the case when there are no sources and sinks. In such202

a case, telescopic cancelling of internal fluxes would be rather beneficial.203

By employing a staggered variable arrangement the discrete scalars c are resided in cell centres as defined204

before, but the discrete velocities u are positioned at the cell faces. Their values are designated by um+1/2,205

with m = 0, ...,M . To demonstrate proper treatment of a discontinuity at the discrete level, we consider a206

stationary flow. This case is motivated by the requirement of flux conservation, as becomes clear later on.207

We have the following spatial discretization208

fm+1/2 − fm−1/2

∆x
=

um+1/2cm+1/2 − um−1/2cm−1/2

∆x
= 0 (7)

The density c at the faces of the control volume needs to be interpolated in terms of cell-centre values.209

Linear interpolation or arithmetic averaging is the commonly used one and is given by210

cm+1/2 ≈ 1

2
(cm + cm+1)

Substitution yields a second order scheme for a uniform grid,211

0 =
fm+1/2 − fm−1/2

∆x
≈ um+1/2 (cm + cm+1)− um−1/2 (cm−1 + cm)

2∆x
(8)

This scheme can give rise to a spurious checkerboard mode for density c. Indeed, if the flow velocity is212

divergence free or uniform, i.e. um+1/2 = um−1/2, we obtain213

cm+1 = cm−1
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which involves alternate c values only, allowing unwanted oscillations with a wave length of 2∆x, cm =214

(−1)m c̃ with dc̃/dx = 0. This odd-even decoupling is not detected by the scheme and, as a consequence,215

the checkerboard mode can be unbounded.216

To prevent spurious oscillations, a first order upwind scheme is chosen, as follows217

cm+1/2 ≈



















cm , if um+1/2 > 0

cm+1 , if um+1/2 < 0

(9)

Let us consider a positive flow. One obtains218

0 =
fm+1/2 − fm−1/2

∆x
≈ um+1/2cm − um−1/2cm−1

∆x
(10)

which clearly cured the odd-even decoupling problem.219

We reexamine the schemes (8) and (10) but from a different point of view, namely conservation of a flux.220

Certain physical quantities may undergo rapid changes leading to the formation of a shock in a finite time.221

For instance, discontinuous water depths and flow velocities may occur in rapidly varied flows like flows222

over steep bottom slopes, hydraulic jumps, tidal bores, and broken waves. On the other hand, continuity is223

required regarding to the flow or transport across an abrupt change. This can readily be deduced from the224

Rankine-Hugoniot relation or jump condition [1].225

Let us consider a stationary jump at x1 < xs < x2, where the subscripts 1 and 2 denote just upstream226

and just downstream of the jump, respectively. Although the quantities c and u may exhibit a discontinuity227

at xs, flux uc must be continuous across the jump, since d uc/dx = 0. Hence, the following flux conservation228

must hold229

u1 c1 = u2 c2 (11)

Commonly, condition (11) enforces conservation of flux across the shock. However, this condition can also230

be interpreted as a prerequisite for an accurate and stable approximation of the flux at the cell interface. By231

nature, discrete unknowns are piecewise constant functions on a computational grid, and consequently, are232

discontinuous across cell faces. Generally, their smoothness properties are influenced by the grid resolution.233

In turn, this may affect the numerical accuracy. Variations in u and c, particularly across shocks, tend234

to be far stronger than changes in flux uc. Furthermore, since grid cells on either side of a discontinuity235

contain no information about each other, any approximation of unknown c using arithmetic averaging,236

linear interpolations or central discretizations can give rise to spurious oscillations. Yet it is desirable that237

Eq. (11) holds exactly at the discrete level; given the upstream state of the flow, the downstream state is238

completely determined by the Rankine-Hugoniot relation in question. Hence, numerical errors associated239

with inadequate resolution of gradients are reduced significantly, whereas stability might enhanced as the240

odd-even decoupling of any dependent variable may be prevented. However, as we will see in due course,241
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when a numerical scheme does not comply with the jump condition (11), the odd-even decoupling problem242

crops up, if allowed by the scheme.243

Let us go back to our schemes. From Eq. (10) we have244

um+1/2 cm = um−1/2 cm−1

implying that flux uc is continuous when evaluated from either side of the cell. This scheme strictly conserves245

flux cell by cell and remains accurate irrespective of the grid size. This is called cellwise (or pointwise)246

conservation and the associated jump condition is given by247

[uc]m = um+1/2 cm − um−1/2 cm−1 = 0 (12)

with the operator [·]m denoting the jump of a flux across cell m.248

By contrast, from Eq. (8), we derive the following249

[uc]m = um+1/2 cm − um−1/2 cm−1 = um−1/2 cm − um+1/2 cm+1 (13)

Obviously, continuity of flux uc across the cell can not be obtained by the achieved scheme as the right250

hand side gives rise to internal sources of density c. This is the case, for instance, if the flow velocity u is251

divergence free and density c exhibits an odd-even oscillation. To appreciate the nature of the underlying252

problem, it should be pointed out that the magnitude of the error due to disbalance (13) can be relevant,253

especially when a coarse grid is employed. Provided this scheme is converging, one can obviously achieve a254

high accuracy by refining the mesh, but this approach is untenable in large-scale simulations.255

4. Finite difference schemes for the 1D shallow water equations256

This section deals with the various spatial discretizations of the inviscid, incompressible shallow water257

equations. In order to make the matter clear and unambiguous, but with no loss of generality, we will258

present a detailed study of the different methods applied to the one-dimensional continuity and momentum259

equations. We will discuss two versions of these equations in the remainder of this paper. The first system260

of equations to be investigated is given by261

∂ζ

∂t
+

∂q

∂x
= 0 (14)

262

∂hu

∂t
+

∂qu

∂x
+ gh

∂ζ

∂x
= 0 (15)

with the primitive variables ζ(x, t) and u(x, t). Furthermore, h(x, t) = ζ(x, t)+ d(x) and d(x) represents the263

bed topography. These one-dimensional equations follow from Eqs. (4) and (5), respectively. The second264

one is a set of hyperbolic equations based on Eqs. (1) and (3), and is given in 1D form265

∂h

∂t
+

∂q

∂x
= 0 (16)
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266

∂q

∂t
+

∂
(

uq + 1

2
gh2
)

∂x
= gh

∂d

∂x
(17)

with the flux variables h(x, t) and q(x, t).267

Each of the above sets of 1D equations serves as a proxy for a detailed analysis of the different numerical268

approaches to be discussed below. We will first consider the spatial discretization of continuity equation (14)269

and momentum equation (15). Thereafter, the discretization of the hyperbolic equations (16) and (17) will270

be outlined. Time integration will be presented in Section 5.271

With the staggered grid arrangement, the primitive variables are carried at alternate grid points. Both272

the water level ζm and water depth hm are located at the cell centre of the associated grid cell, xm, whereas273

this grid cell is bounded by the cell interfaces at xm−1/2 and xm+1/2, where the velocities um±1/2 are located;274

see also Figure 1. Note that the bed level dm is resided at the cell centre.275

A two-point stencil can be obtained for both the continuity equation and all terms of the momentum276

equation, except the advection term, approximated with second order accuracy on staggered uniform meshes.277

This provides the ability to construct numerical schemes that are consistent with the Rankine-Hugoniot278

relations for conservation of mass flux and momentum flux.279

Let us consider the continuity equation (14). Central discretization in space yields280

dζm
dt

+
qm+1/2 − qm−1/2

∆x
= 0 (18)

For a stationary flow, we have281

qm+1/2 − qm−1/2 = 0 ⇒
282

[q]m = 0 (19)

Eq. (19) represents the Rankine-Hugoniot relation with respect to the cellwise conservation of mass flux283

applied at the staggered grid.284

Since um+1/2 is the primitive variable, we compute the mass flux, as follows285

qm+1/2 = hm+1/2um+1/2 (20)

The water depth at the cell face hm+1/2 must be defined further. The following first order approximation286

allows conditional preservation of non-negativity of the water depth (see Section 5)287

hm+1/2 ≈ ĥm+1/2 =



















hm , if um+1/2 > 0

hm+1 , if um+1/2 < 0

(21)

with the hat denoting an upwind value. Alternatively, the surface elevation ζ can be taken upwind instead288

of the water depth h, while the bed level d is determined by means of a min operator (see, for instance, [34]).289
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This may lead to a more accurate result, particularly at coarse grids. In this study, however, we restrict290

ourselves to the use of Eq. (21). This completes the spatial discretization of the continuity equation.291

Next, we consider the second term of the momentum equation (15). We have assumed an equidistant292

grid in the x−space, and we do not consider the domain boundaries. Due to these assumptions, and the fact293

that the considered term is written in a conservative form, both finite difference and finite volume methods294

yield the same discretization, which is given by295

∂qu

∂x
|m+1/2 ≈ (qu)m+1 − (qu)m

∆x
(22)

with m + 1/2 the index indicating the cell-centre point in a control volume of um+1/2. The faces of this296

control volume are indicated with the indices m and m + 1. In this context, the velocity of momentum297

um+1/2 is a cell-volume quantity, whereas the mass flux qm+1/2 in Eq. (20) is a cell-face quantity. Both q298

and u at the faces of the control volume need to be interpolated. Since the mass flux q is continuous, the299

following interpolation300

qm ≈ qm =
1

2

(

qm−1/2 + qm+1/2

)

(23)

is a proper one. Here, the overbar denotes the aritmethic average of a quantity across the cell or cell interface.301

This averaging is second order accurate on a uniform grid. For the transported velocity um (it may not be302

smooth!) we apply a first order upwind scheme, as follows303

um ≈ ûm =



















um−1/2 , if qm > 0

um+1/2 , if qm < 0

(24)

Second order accuracy can be obtained by means of a higher order upwind scheme, with or without a304

flux limiter. This scheme is treated as a deferred correction to the first order upwind scheme, while this305

correction is added to the right hand side of the momentum equation [35]. In this way, second order accuracy306

is achieved, and the size of the stencil associated with the first order upwind scheme is unaltered and remains307

low.308

The approximation of the third term of Eq. (15) is obtained by means of second order central differences,309

as follows310

h
∂ζ

∂x
|m+1/2 ≈ hm+1/2

ζm+1 − ζm
∆x

with311

hm+1/2 =
1

2
(hm + hm+1) (25)

To demonstrate cellwise conservation of the momentum flux, we thus restrict ourselves to a stationary,312

positive flow. In this case q is constant, and so we have qm = qm−1/2 = qm+1/2, and with qm > 0 and313

qm+1 > 0, one obtains from Eq. (22)314

∂qu

∂x
|m+1/2 ≈ qm+1ûm+1 − qmûm

∆x
=

qm+1/2um+1/2 − qm−1/2um−1/2

∆x
(26)
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We prove the cellwise conservation of momentum flux as follows315

qm+1/2um+1/2 − qm−1/2um−1/2 + ghm+1/2 (ζm+1 − ζm) = 0 ⇒
316

qm+1/2um+1/2 − qm−1/2um−1/2 + ghm+1/2 (hm+1 − hm) = ghm+1/2 (dm+1 − dm) ⇒
317

qm+1/2um+1/2 − qm−1/2um−1/2 +
1

2
g
(

h2
m+1 − h2

m

)

= ghm+1/2 (dm+1 − dm) ⇒
318

[

qu+
1

2
gh2

]

m+1/2

= ghm+1/2 [d]m+1/2 (27)

Eq. (27) represents the Rankine-Hugoniot relation of momentum flux conservation applied at the staggered319

grid. Note that this relation holds on the interface xm+1/2, while the jump in qu is taken upstream of cell320

edge xm+1/2 by virtue of flux continuity (cf. Eq. (12)). It must be emphasized that this property remains321

valid when second order accuracy by means of a deferred correction scheme is included. It should also be322

noted that the water depth at the cell face, Eq. (25) as occurred in the surface gradient, is taken as the323

arithmetic average. This is required to obtain a well-balanced scheme representing the hydrostatic balance324

between the pressure flux and the topography term [7, 10]325

1

2
g
[

h2
]

m+1/2
= ghm+1/2 [d]m+1/2 (28)

that enables to preserve the quiescent water over varying bathymetry, i.e. ζ = constant, and u = 0.326

Continuity of the mass flux and momentum flux across a discontinuity, as given by Eqs. (19) and (27),327

respectively, requires a loss in the (kinetic) energy (implying an increase of entropy)2 [1]. This loss is due to328

the viscous dissipation and is provided by the upwind scheme (24). This numerical viscosity is also required329

to damp out oscillations arising in the regions of steep gradients and numerical dispersion errors. Although330

numerical viscosity is an implicit and uncontrollable feature of the applied upwind scheme, the corresponding331

value of viscosity is solely determined by the cellwise conservation of mass and momentum fluxes across the332

discontinuity. This implies a correct magnitude needed for a viscosity to handle the discontinuities in the333

primitive variables. This will be demonstrated in Section 6.3.1.334

The above approximations are outlined and proposed earlier in [24] and [27]. They are also implemented335

in NEOWAVE [36] and SWASH [34]. In addition, similar discretization equations were presented by Zhou336

[37], although he suggested to apply Eq. (25), instead of Eq. (21), to approximate the mass flux following337

Eq. (20). It must be stressed that, contrary to the approaches of Doyen and Gunawan [27] and Zhou [37],338

the spatial discretizations presented so far have been obtained from equations that are not written in strong339

conservation form, viz. Eqs. (14)−(15). In fact, they can even be derived from shallow water equations in340

non-conservative form (see, e.g. [24]).341

2As such, a flow across the discontinuity experiences a deceleration. That is to say, the combined approximations (19) and

(27) can not be applied in regions of contraction with flow acceleration. For instance, Stelling and Duinmeijer [24] demonstrated

an erroneous increase in energy head for the subcritical flow over sudden contractions due to strict conservation of momentum.
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We now construct a staggered scheme for the solution of continuity and momentum equations written in342

strong conservation form, viz. Eqs. (16) and (17). The momentum variable q is considered as the unknown343

of the momentum equation (17), which is the local momentum per unit length, whereas u = q/h is the flow344

rate per unit width. Obviously, q is treated as the transported storage quantity, whereas u acts as transport345

velocity. This point of view has been adopted by, among others, Stansby [18] and Zijlema and Stelling [38].346

The continuity equation (16) is discretized as347

dhm

dt
+

qm+1/2 − qm−1/2

∆x
= 0 (29)

which satisfies the jump condition (19) in steady-state case.348

For spatial discretization of the advection term of Eq. (17), first order upwinding with respect to q is349

employed, while taking the arithmetic mean of u, as follows350

∂uq

∂x
|m+1/2 ≈ (uq)m+1 − (uq)m

∆x
(30)

with351

um ≈ um =
1

2

(

um−1/2 + um+1/2

)

(31)

and352

qm ≈ q̂m =



















qm−1/2 , if um > 0

qm+1/2 , if um < 0

(32)

The other terms of Eq. (17) are discretized centrally, as follows353

∂h2

∂x
|m+1/2 ≈ h2

m+1 − h2
m

∆x

and354

h
∂d

∂x
|m+1/2 ≈ hm+1/2

dm+1 − dm
∆x

Velocity um+1/2 remains to be defined, since qm+1/2 is the resolved variable. Stansby [18] suggested the355

following ‘central’ approach356

um+1/2 =
qm+1/2

hm+1/2

(33)

However, as an alternative, this quantity may also be obtained from Eqs. (20) and (21), as follows357

um+1/2 =
qm+1/2

ĥm+1/2

(34)

which is referred to as the ‘upwind’ approach. Note that um+1/2 may not be smooth for flow with space-358

varying depth.359
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We now demonstrate that the jump condition can not be guaranteed. Let us consider a steady-state,360

positive flow. We have qm+3/2 = qm+1/2 = qm−1/2, and361

∂uq

∂x
|m+1/2 ≈ um+1q̂m+1 − umq̂m

∆x
=

=

(

um+1/2 + um+3/2

)

qm+1/2 −
(

um−1/2 + um+1/2

)

qm−1/2

2∆x

=
1

2

(

um+3/2 + um−1/2

)

qm+1/2 − um−1/2qm−1/2

∆x
(35)

Substitution in the discretized momentum equation yields362

(

um+3/2 + um−1/2

2

)

qm+1/2 − um−1/2qm−1/2 +
1

2
g
(

h2
m+1 − h2

m

)

= ghm+1/2 (dm+1 − dm) (36)

Thus, the jump condition (27) can not be recovered exactly at the staggered grid due to an arithmetic363

averaging of flow velocity at xm+1/2. In fact, um+1/2 is not involved in Eq. (36), indicating that this364

scheme allows odd-even decoupling. This will lead to inaccurate momentum flux, as will be demonstrated365

in Section 6.366

The cause is the reverse roles of the transported quantity and the transport velocity. In this approach,367

they are q and u, respectively, which should be the other way around, i.e. u and q, because of the constraint368

∂q/∂x = 0. Indeed, q is constant across a grid cell that is assured by the continuity equation (19). Next, if369

∂(qu)/∂x = 0, then u must be constant. Using the discretization according to Eq. (26) yields370

um+1/2 = um−1/2

implying that u is constant over the same cell. However, with approximation (35), one obtains371

um+3/2 = um−1/2

displaying the odd-even decoupling, which induces a checkerboard pattern.372

5. Time integration373

The staggered schemes, as outlined in Section 4, are integrated in time by means of an explicit leapfrog374

scheme using staggering in time [31]. The flow velocity um+1/2 and the depth-integrated velocity qm+1/2375

are evaluated at each half time step (n+ 1/2)∆t, whereas the surface elevation ζm and the water depth hm376

at each whole time step n∆t, with ∆t the time step and n = 0, ...,N indicating the time level tn = n∆t377

with, in total, N + 1 time steps.378

We consider three variants of the staggered schemes to be integrated in time.379

380

Variant I381

382
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The first variant has been discussed earlier in Doyen and Gunawan [27]. They first solve the continuity383

equation to obtain hn+1
m , followed by the momentum equation to obtain u

n+3/2
m+1/2. Hence, the continuity384

equation (29) is discretized in time, as follows385

hn+1
m − hn

m

∆t
+

q
n+1/2
m+1/2 − q

n+1/2
m−1/2

∆x
= 0 (37)

This equation represents the volume balance386

∆x
[

hn+1
m − hn

m

]

+∆t
[

q
n+1/2
m+1/2 − q

n+1/2
m−1/2

]

= 0

demonstrating that the volume (per unit width) is conserved over time for an isolated physical domain.387

Furthermore, with q
n+1/2
m+1/2 = ĥn

m+1/2u
n+1/2
m+1/2, one can verify by insertion of Eq. (21) into Eq. (37) that the388

water depth hn+1
m remains non-negative [24], if389

[

max
(

u
n+1/2
m+1/2, 0

)

−min
(

u
n+1/2
m−1/2, 0

)]

∆t

∆x
≤ 1 (38)

Condition (38) is a sufficient but not necessary condition. By virtue of Eq. (21), the water depth at the cell390

interface, ĥn+1

m+1/2, is non-negative under the same condition. Thus, flooding never happens faster than one391

grid cell per time step. On the other hand, when a wet cell becomes dry, the water depth can be arbitrary392

small, making the solution of the momentum equation meaningless. Instead, the momentum equation (39)393

is not solved and the velocity u
n+3/2
m+1/2 is set to zero if the water depth ĥn+1

m+1/2 is below a threshold value.394

Throughout this work, this value equals 10−8 m, which does not adversely affect the mass balance. Apart395

from this minor measure, no further modifications with respect to wetting and drying are required.396

The time-integrated version of the momentum equation, as proposed by Doyen and Gunawan [27], is397

given by398

h
n+1

m+1/2u
n+3/2
m+1/2 − h

n

m+1/2u
n+1/2
m+1/2

∆t
+

q
n+1/2
m+1 û

n+1/2
m+1 − q

n+1/2
m û

n+1/2
m

∆x
+

1

2
g
(hn+1

m+1)
2 − (hn+1

m )2

∆x

= g h
n+1

m+1/2

dm+1 − dm
∆x

(39)

or, alternatively,399

h
n+1

m+1/2u
n+3/2
m+1/2 − h

n

m+1/2u
n+1/2
m+1/2

∆t
+

q
n+1/2
m+1 û

n+1/2
m+1 − q

n+1/2
m û

n+1/2
m

∆x
+ g h

n+1

m+1/2

ζn+1

m+1 − ζn+1
m

∆x
= 0 (40)

with ζn+1
m = hn+1

m − dm. Note that the third term is evaluated using the updated hn+1
m to obtain a stable400

solution [27], and that no systems of equations are involved. The second term of Eq. (39) is evaluated401

by means of Eqs. (23) and (24). Notice the role of mass flux q in Eq. (39) being the transport velocity.402

Assuming a uniform bed, the momentum balance can be derived from Eq. (39), yielding403

∆x
[

q
n+3/2
m+1/2 − q

n+1/2
m+1/2

]

+∆t

[

q
n+1/2
m+1 û

n+1/2
m+1 − qn+1/2

m ûn+1/2
m +

1

2
g
(

(hn+1

m+1)
2 − (hn+1

m )2
)

]

= 0
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provided that q
n+1/2
m+1/2 = h

n

m+1/2u
n+1/2
m+1/2 is the conserved momentum per unit length.404

The time step for this explicit scheme is limited by the following CFL criterion405

[

| un+1/2
m+1/2 | +

√

gĥn
m+1/2

]

∆t

∆x
≤ 1

Note that this CFL criterion determines the maximum time step which satisfies automatically condition (38).406

407

Variant II408

409

The second variant resembles the first one in the solution procedure, except that the momentum per410

unit length q is updated instead of flow velocity u, by solving the following equation411

q
n+3/2
m+1/2 − q

n+1/2
m+1/2

∆t
+

u
n+1/2
m+1 q̂

n+1/2
m+1 − u

n+1/2
m q̂

n+1/2
m

∆x
+

1

2
g
(hn+1

m+1)
2 − (hn+1

m )2

∆x
= g h

n+1

m+1/2

dm+1 − dm
∆x

(41)

which conserves q
n+3/2
m+1/2 in the case of a uniform bed topography. The second term of Eq. (41) is evaluated412

using Eqs. (31) and (32). Since q is the resolved variable, the requirement of strict non-negative water413

depths can not be properly enforced by Eq. (37). In addition, q is the transported quantity, whereas u is414

the transport velocity which needs to be reconstructed, either based on Eq. (33) or Eq. (34). Like the first415

variant, a no flow condition at the cell interface between a dry and wet cell is imposed, so that the mass416

balance is maintained.417

A similar approach in which the local momentum q is updated can be found in Madsen et al. [25].418

419

Variant III420

421

SWASH is a wave-flow model intended to simulate both long and short waves and rapidly varied flows422

[34]. This model solves the shallow water equations including the non-hydrostatic pressure that takes into423

account the frequency dispersion of the short waves and vertical accelerations. For this reason, and contrary424

to the first variant, in this variant the momentum equation is solved first and then the continuity equation.425

We will deal with the following explicit momentum equation (cf. Eq. (40))426

h
n

m+1/2u
n+1/2
m+1/2 − h

n−1

m+1/2u
n−1/2
m+1/2

∆t
+

q
n−1/2
m+1 û

n−1/2
m+1 − q

n−1/2
m û

n−1/2
m

∆x
+ g h

n

m+1/2

ζnm+1 − ζnm
∆x

= 0 (42)

To obtain the final discretized momentum equation for the primitive variable um+1/2, we start with an427

explicit scheme for the continuity equation (29), which is given by428

hn
m − hn−1

m

∆t
+

ĥn−1

m+1/2u
n−1/2
m+1/2 − ĥn−1

m−1/2u
n−1/2
m−1/2

∆x
= 0 (43)
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Next, we derive an equation by taking the arithmetic average of Eq. (43) in points m and m+ 1, yielding429

h
n

m+1/2 − h
n−1

m+1/2

∆t
+

q
n∗

−1/2
m+1 − q

n∗
−1/2

m

∆x
= 0 (44)

with430

qn
∗

−1/2
m =

1

2

(

ĥn−1

m−1/2u
n−1/2
m−1/2 + ĥn−1

m+1/2u
n−1/2
m+1/2

)

Multiplying Eq. (44) with u
n−1/2
m+1/2 and subtracting the result from Eq. (42), after which it is divided by431

h
n

m+1/2, gives432

u
n+1/2
m+1/2 − u

n−1/2
m+1/2

∆t
+

1

h
n

m+1/2

(

q
n−1/2
m+1 û

n−1/2
m+1 − q

n−1/2
m û

n−1/2
m

∆x
− u

n−1/2
m+1/2

q
n∗

−1/2
m+1 − q

n∗
−1/2

m

∆x

)

+ g
ζnm+1 − ζnm

∆x
= 0 (45)

After the momentum equation (45) is solved, the continuity equation is then solved, which is given by433

(cf. Eq. (43))434

ζn+1
m − ζnm

∆t
+

ĥn
m+1/2u

n+1/2
m+1/2 − ĥn

m−1/2u
n+1/2
m−1/2

∆x
= 0 (46)

Like the first variant, this scheme preserves non-negativity of the water depth under the CFL condition (38)435

and remains stable, if436
[

| un−1/2
m+1/2 | +

√

gĥn
m+1/2

]

∆t

∆x
≤ 1

In addition, assuming a uniform bathymetry, Eq. (45) conserves momentum per unit length h
n−1

m+1/2u
n−1/2
m+1/2437

over time (cf. Eq. (42)). Notice that variants I and III are mathematically equivalent, although they differ438

in the order of the solution with respect to time stepping.439

Concerning the temporal order of accuracy, all three variants are second order accurate in time in the440

absence of the advection term by virtue of staggering in time. To obtain second order accuracy in both space441

and time, a predictor-corrector technique is adopted. In the predictor step, the momentum equation (39),442

(45) or (41) is solved to determine the provisional flow velocities u∗

m+1/2 or momentum values q∗m+1/2,443

respectively. In the corrector step, these values are corrected by means of a second order upwind scheme444

in a deferred correction fashion, while marching in time using the MacCormack approach to achieve second445

order accuracy in time. See [34] for further details. The accuracy test of this approach will be discussed in446

Section 6.2.447

6. Numerical experiments448

6.1. Methods to be assessed449

A number of numerical methods for the solution of the depth-integrated shallow water equations has450

been discussed in the previous sections. In this section, we present three staggered schemes, which in turn451
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will be assessed in light of the numerical accuracy, stability, robustness and conservation properties. In452

essence, they are distinguished by the use of dependent variables which are either primitive or flux variables.453

454

Scheme I − Stagg (ζ,u)455

456

The first staggered scheme is the third variant of time integration schemes as outlined in Section 5 and is457

given by Eqs. (45) and (46), augmented with Eqs. (21), (23) and (24). This method employs the primitive458

variables ζ and u. A key feature of this approach is that the depth-averaged velocity u is transported by459

the mass flux q, which is computed with Eqs. (20) and (21). Another key aspect is the preservation of non-460

negativity of the water depth based on condition (38). The method satisfies the Rankine-Hugoniot jump461

relations (19) and (27), implying continuity of the mass flux and momentum flux across discontinuities,462

respectively. Furthermore, the scheme is well-balanced, i.e. it preserves exactly the balance between the463

pressure flux and the bed slope term, so that artificial flows are excluded when quiescent still-water condi-464

tions are considered. This first scheme is denoted as Stagg (ζ,u). Note that this approach is implemented465

in, e.g. SWASH [34]. Also note that this scheme is similar to the one described in [27].466

467

Scheme II − Stagg U (h,q)468

469

The second staggered scheme consists of Eqs. (37) and (41) combined with Eqs. (31) and (32). This470

is also the second variant of time integration schemes presented in Section 5. This scheme uses the water471

depth h and the depth-integrated velocity q (or momentum per unit length) as the resolved variables. The472

depth-averaged velocity u is obtained by means of the ‘upwind’ approach, i.e. Eq. (34). We denote this473

scheme as Stagg U (h,q). Like the first scheme, this scheme preserves steady-state flows at rest. However,474

the method does not comply with the jump condition (27), so that it allows to produce odd-even oscillations475

(viz. Eq. (36)). In addition, the scheme can not ensure non-negativity of the water depth, since a condition476

like Eq. (38) can not be deduced from this scheme.477

478

Scheme III − Stagg C (h,q)479

480

The third staggered scheme is similar to the second one, except the depth-averaged velocity u is esti-481

mated via the ‘central’ approach, i.e. Eq. (33). This scheme is designated as Stagg C (h,q).482

483
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6.2. Convergence test484

To test the actual order of accuracy of the discussed schemes we will employ the method of manufactured485

solutions [39]. We consider a progressive wave in a one-dimensional domain of the following form486

ζ(x, t) = a0 cos

(

2π

[

x

L
− t

T

])

with a0, L and T the wave amplitude, length and period, respectively. The bed is uniform. To satisfy487

continuity equation (14), the mass flux is then given by q(x, t) = c0ζ(x, t) with c0 =
√
gd the wave speed.488

Next, this manufactured solution is substituted into momentum equation (15) or (17) yielding non-zero489

terms, which can be added to the momentum equation. These terms act as forcing terms for preventing the490

progressive wave from being deformed by nonlinearity. Also, the generation of higher harmonics is precluded.491

In order to test all terms of the discretized equations, including momentum advection, the amplitude of the492

chosen solution was set to a0 = 0.5d. The boundary condition at x = 0 was q(t) = a0c0 cos(2πt/T ) and a493

zero velocity was applied at x = 10L. This boundary location is sufficiently moved away from the domain494

of interest so as to not to introduce reflection errors in the solution. Both ζ and u were initially set to zero.495

A grid refinement study was conducted to assess the convergence properties of the three discussed496

schemes. For this purpose second order central differences were implemented for the approximation of497

momentum advection by means of the deferred correction approach [35]. Furthermore, for the computation498

of hm+1/2 the aritmethic average was employed , i.e. hm+1/2 ≈ hm+1/2, viz. Eq. (25), instead of Eq. (21). As499

a consequence, schemes Stagg U (h,q) and Stagg C (h,q) are identical. Computational grids consisting500

of 10, 20, 40 and 80 grid cells per wave length were used. In order to keep the Courant number c0∆t/∆x501

constant, the time step ∆t was reduced for each grid refinement. A Courant number of 0.2 was chosen, so502

that 50, 100, 200 and 400 time steps per wave period were employed, respectively.503

The root-mean-square errors for ζ(x, t) and u(x, t) were monitored after five wave periods in a part of504

the domain, namely 0 ≤ x ≤ 5L. The results are displayed in Figure 2. The observed error is a combination
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Figure 2: Root-mean-square error in water level ζ (in m; black squares) and in velocity u (in m/s; red dots) at t = 5T as

function of grid size obtained with different schemes. The numbers in the plots indicate the rate of convergence.

505

of spatial and temporal contributions obtained on different grids and time steps. Given the use of relatively506
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coarse grids, the rate of convergence of schemes Stagg (ζ,u) and Stagg C (h,q) is inclined to second order507

with respect to ∆x (and to ∆t) for both ζ and u.508

6.3. Idealized test cases509

In this section we present three idealized test cases with the objective of assessing the capabilities and510

limitations of each of the methods described in Section 6.1. In particular, we will address the following:511

• the continuity of mass and momentum flux across a bottom step;512

• the avoidance of unwanted effects induced by the checkerboard modes; and513

• the accuracy with which either the steady state or unsteady flow solutions are resolved.514

The three test cases include (i) expansion in open channel flow; (ii) transition from supercritical to subcritical515

flow across a bottom step; and (iii) unsteady dam break flow on dry bed.516

6.3.1. Subcritical flow over backward facing step517

We consider a frictionless channel with a constant width and a jump in the bottom profile as depicted518

in Figure 3. The length of the channel is 10 km. Upstream of this jump the bed level is 5 m below datum
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Figure 3: Sketch of expansion flow over a bottom step.

519

level (d1 = 5 m), and downstream the bed level is 10 m below datum level (d2 = 10 m). Hence, the height520

of the bottom step is 5 m. In addition, upstream of the jump a discharge of 10 m2/s is given, whereas521

downstream a water level of 0 m is imposed. The maximum Froude number for this test is 0.3, so the flow522

is subcritical everywhere. Based on elementary balance principles in open channel flow [40, 41], the resulted523

flow experiences an expansion downstream of the jump with a loss in the energy head. Both mass and524

momentum conservation must hold everywhere. This example is an idealized study of rapidly varied steady525

flow with an abrupt change in the water depth with which the depth and momentum on either side of the526

jump is given.527

Across the jump we have the following equations528

u1h1 = u2h2 = 10 m2s−1
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529

u2
1h1 +

1

2
g (h1 + 5)

2
= u2

2h2 +
1

2
gh2

2

with indices 1 and 2 indicating the locations upstream and downstream of the jump, respectively. Note530

that the left hand side of the momentum balance includes the hydrostatic pressure against the wall (of the531

step). Since the downstream water depth is fixed in the test, we will examine the upstream momentum flux532

obtained with different methods. By means of a rootfinding method its theoretical value is obtained as533

u1q1 +
1

2
gh2

1 = 137.909 m3s−2

To check the continuity of momentum flux across the jump at the discrete level, we consider the following534

adapted downstream momentum flux535

u2q2 +
1

2
gh2

2 −
5

2
g (h1 + h2)

with the last term representing the topography term. Note that for each method the downstreammomentum536

flux was computed with the indices 1 and 2 corresponding to the consecutive grid points where the actual537

jump occurred in between.538

The mesh width was set to 10 m for all methods, whereas the time step was 0.5 s. This time step539

was fixed a priori, and then left unchanged throughout simulations. It fulfilled the required CFL condition540

associated with the used schemes (maximum CFL is 0.8).541

Initially, both surface elevation and velocity were zero everywhere. The steady state results of the542

methods are depicted in Figure 4. The first panel illustrates mass conservation: the net mass flux must be543

zero. The schemes Stagg (ζ,u) and Stagg U (h,q) appeared to be strictly mass conservative, whereas544

the Stagg C (h,q) method is mass conservative up to machine precision. The second panel demonstrates545

the continuity of momentum flux across the jump. All methods clearly showed perfect continuity of the546

momentum flux, implying that they all satisfy jump condition (27). This can be explained by the fact that547

the gradient of the solution is zero everywhere except at the bottom step, so that the set of finite difference548

equations automatically reduces to the algebraic expressions (19) and (27). Schemes Stagg U (h,q) and549

Stagg C (h,q) underestimated the upstream momentum flux, whereas this flux as computed by Stagg550

(ζ,u) is precisely 137.909 m3s−2.551

Although all discussed schemes comply with the Rankine-Hugoniot relations in the jump region, still the552

overall numerical solution may not be correct. As pointed out by, e.g. Stelling and Duinmeijer [24], Bernetti553

et al. [42] and Murillo and Garcia-Navarro [43], the numerical evaluation of the hydrostatic force exerted554

by the bottom step on the fluid is responsible for this. For instance, Bernetti et al. [42] derive the jump555

conditions for mass and momentum whereby the total energy across the discontinuity must be dissipated556

correctly (i.e. the entropy condition is fulfilled). In this way, non-physical solutions are excluded.557

22



−3 −2 −1 0 1 2 3

−10

−8

−6

−4

−2

0

2
x 10

−8

n
e

t 
m

a
s
s
 f

lu
x
 [

m
2
/s

]

 

 

Stagg (ζ,u)

Stagg U (h,q)

Stagg C (h,q)

−3 −2 −1 0 1 2 3
134.5

135

135.5

136

136.5

137

137.5

138

138.5

x [km]

m
o

m
e

n
tu

m
 f

lu
x
 [

m
3
/s

2
]

Figure 4: Computed net mass flux (upper panel) and momentum flux (lower panel) along the channel for the expansion flow

with a jump in the bed. The location of this jump is x = 0.

Let us now return to the expansion flow test. We calculate the downstream momentum flux using the558

jump conditions of Bernetti et al. [42], as follows559

u2q2 +
1

2
gh2

2 −
1

2
g [h1 + (ζ1 + d2)] (d2 − d1) = 137.909 m3s−2

with the indices 1 and 2 corresponding to the first and last grid point of the computational domain, re-560

spectively. The third term on the left hand side is the actual horizontal force imposed by the step with561

height d2 − d1 = 5 m on the fluid. Table 1 presents a comparison among different schemes with respect to562

upstream and downstream momentum flux. Only scheme Stagg (ζ,u) is perfectly momentum flux conser-

Table 1: Comparison of upstream and downstream momentum flux between the discussed schemes for the expansion flow.

scheme upstream momentum downstream momentum

flux ( m3s−2) flux ( m3s−2)

Stagg (ζ,u) 137.909 137.909

Stagg U (h,q) 137.077 138.842

Stagg C (h,q) 135.288 140.866

563

vative, whereas other schemes are not. The explanation for this finding is related to the difference between564
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Eq. (36) and Eq. (27), in particular the advection part, owing to the erroneous interpretation of u as the565

transport velocity. This difference becomes relevant at the shock.566

In light of the foregoing, it is expected that scheme Stagg (ζ,u) computes the energy dissipation cor-567

rectly. Now we look at the energy head loss across the shock. A part of the kinetic energy is transformed to568

potential energy and to energy loss due to expansion. At the discrete level, however, the amount of artificial569

viscosity induced by a scheme controls the actual amount of loss. Because of continuity, the decrease in the570

kinetic part of the energy head across the jump is fixed. This implies that the increase in the piezometric571

head after the expansion is determined solely by the level of artificial dissipation.572

The loss in energy head due to expansion can be computed theoretically according to the Borda-Carnot573

equation [40]574

∆H =
(u1 − u2)

2

2g
= 5.55 cm

where ∆H is the energy head loss, and the indices 1 and 2 symbolize the location before the flow expansion575

and after the flow separation, respectively. For each scheme the head loss is computed as follows576

∆H = ζ1 − ζ2 +
u2
1 − u2

2

2g

of which the results are presented in Table 2. Furthermore, for each scheme the decrease in the kinetic577

part and the increase in the potential part of the energy head are displayed as well. As expected, scheme

Table 2: Comparison of decrease in kinetic part of energy head, increase in potential part of energy head, and head loss between

the discussed schemes for the expansion flow.

scheme ∆u2

2g
(cm) ∆ζ (cm) ∆H (cm)

Stagg (ζ,u) −16.18 10.69 5.49

Stagg U (h,q) −16.36 12.60 3.76

Stagg C (h,q) −16.72 16.72 0.00

578

Stagg (ζ,u) is the most accurate one, i.e. it produces virtually the right amount of energy dissipation.579

Obviously, this amount is larger than that of scheme Stagg U (h,q), as evidenced by the smaller head loss580

or higher potential energy. Scheme Stagg C (h,q) is seemingly energy head conservative, by which the581

entropy is likely decreased.582

6.3.2. Flow transition over a submerged bottom step583

In this example we study the propagation of simple waves (shock and rarefaction waves) and flow tran-584

sition across a bottom step in a one-dimensional, horizontal, frictionless channel. We consider this channel585

with a length of 20 m and a step of 1 m in the middle of the channel as depicted in Figure 5. This step586
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Figure 5: Schematic view of flow transition across a bottom step with initial conditions.

imposes a horizontal thrust on the flow as described by the hydrostatic pressure integrated over the step587

height [42].588

The initial conditions exhibited a discontinuity in the middle of the channel as well (see Figure 5):589

upstream of the step the water level and flow velocity were 4 m and 15.5 m/s, whereas downstream they590

were 2 m and −1.55 m/s, respectively. At the left boundary, a water level of 4 m was imposed, whereas at the591

right boundary a velocity of −1.55 m/s was given. These conditions do not result in a flow acceleration across592

the bottom step. We compare the model results to the exact solution obtained by solving the associated593

Riemann problem as outlined in Section 6.2.5 of Alcrudo and Benkhaldoun [44] (their Fig. 19).594

The aim of this test case is to investigate the effect of grid spacing on the accuracy of the numerical595

solution obtained with the discussed methods. For this purpose the simulations were made with grid sizes596

of 0.05 m, 0.1 m and 0.2 m, and a relatively small but fixed time step of 0.001 s. This time step was chosen597

as to minimize temporal discretization error. The corresponding Courant numbers based on the upstream598

water depth and velocity are 0.44, 0.22 and 0.11, respectively. The exception is scheme Stagg C (h,q) for599

which an extremely small time step of 10−6 s was chosen to maintain a stable solution.600

The results obtained at the finest grid and t = 0.5 s is presented in Figure 6. Obviously, scheme601

Stagg C (h,q) was not able to produce a proper solution. The other two schemes resolved the transition602

from supercritical to subcritical flow and the two shocks correctly [44]. Especially the first order scheme603

Stagg (ζ,u) is superior. In contrast, scheme Stagg U (h,q) failed to remove spurious oscillations near604

second wave front as it does not obey the Rankine-Hugoniot jump condition for momentum (viz. Eq. (36)).605

Similar observations can be made with respect to coarser grids; see Figures 7 and 8.606

The first order scheme Stagg (ζ,u) yields a more smooth and less accurate solution on the coarsest grid607

(∆x = 0.2 m) compared to the finest one (∆x = 0.05 m). To increase the spatial accuracy of Stagg (ζ,u), a608

second order deferred correction to the first order upwind scheme for the momentum advection is introduced,609

warranting the stability of the whole scheme and the validity of the Rankine-Hugoniot jump relation (27).610

This correction concerns a second order upwind extrapolation augmented with a slope limiter to avoid611

unwanted oscillations. For this test, the MUSCL limiter [33, 45] is employed. Further details on this612
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Figure 6: Comparison of surface elevations at t = 0.5 s for the flow over a step obtained with different schemes with ∆x = 0.05

m and analytical solution.

approach can be found in [34]. The result is depicted in Figure 9 demonstrating the superiority of the higher613

order scheme to its lower order counterpart for high-fidelity coarse grid solutions.614

6.3.3. Dam break on a dry bed615

We consider an unsteady flow with propagation of a dam break wave in a dry horizontal frictionless616

channel. Initially, the surge front is a sudden discontinuity that involves rapid variations of water depth and617

flow velocity. It is treated as a Riemann problem for which the exact solution is available [14]. This test618

case has a distinct feature that in the transition from dry to wet as the bore accelerates, the flow velocity619

displays a jagged discontinuity whereas the water depth goes smoothly to zero.620

The length of the horizontal channel was 100 m, whereas the dam was initially located in the centre621

of the channel. The ends of the channel were closed (zero discharge). The initial upstream water depth622

was 1 m, and the downstream water depth was set to 10−8 m. This specific case exhibits a transition from623

subcritical to supercritical flow with a sonic point at the original location of the dam, where |u| ≃
√
gh.624

The grid spacing was 0.05 m for all methods. Next, to obtain a stable solution and non-negative water625

depths, the time step was set to 0.004 s throughout the simulation for method Stagg (ζ,u) (the maximum626

CFL occurred equals 0.8), whereas scheme Stagg U (h,q) remained stable during the simulation with a627

time step of 0.002 s. We could not achieved a stable solution with method Stagg C (h,q), which will628

therefore not be discussed in this section.629

At time t = 7 s after dam failure, the model results of the two stable schemes are depicted in Figure 10.630

Also shown is the analytical solution. Clearly, the schemes were capable of simulating flow over the dry bed.631

There is overall agreement between the numerical solutions and analytical one up to x = 70 m, displaying a632

rarefaction wave that propagates upstream the initial discontinuity and a bore that propagates downstream633
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Figure 7: Comparison of surface elevations at t = 0.5 s for the flow over a step obtained with different schemes with ∆x = 0.1

m and analytical solution.

over dry bed. This agreement is less satisfactory near the bore front. The presence of spurious oscillations634

is evident in the results of scheme Stagg U (h,q) as depicted in Figure 11, despite the relatively smooth635

water depth h and depth-integrated velocity q in the transition from dry to wet. The primary cause is a636

large discontinuity of velocity u in the leading edge of the wave front (see Figure 10), allowing the scheme637

to produce unphysical oscillations. Indeed, scheme Stagg U (h,q) exhibits a checkerboard pattern caused638

by odd-even decoupling in velocity u (cf. Eq. (36)).639

The results of method Stagg (ζ,u), as presented in Figure 11, demonstrate the importance of the con-640

servation of momentum flux qu+ 1

2
gh2 that prevents any spurious oscillations in the solution. In particular,641

this scheme is very accurate in approaching the wet-to-dry interface, which is attributed to the accuracy642

with which the momentum flux is conserved (see Section 6.3.1) and the preservation of non-negativity of the643

water depth. While the height and the speed of the bore are accurately predicted by scheme Stagg (ζ,u),644

the flow velocity is somewhat underestimated as concluded from Figure 10, although it clearly outperforms645

scheme Stagg U (h,q).646

6.4. Breaking solitary wave running up and down a sloping beach647

The discussed schemes have been tested with three idealized cases. This section presents validation of the648

numerical results with laboratory data from a study concerning solitary wave breaking, runup and rundown649

on a sloping beach as described in Synolakis [46]. The flume is equipped with a hydraulically smooth bottom650

which is horizontally flat followed by a plane beach with slope 1:19.85. The data provides, among others,651

surface profiles under the condition of wave heights of up to 30% of the offshore depth.652

Though the nonlinear shallow water equations do not include wave dispersion effects, the measured data653

enables the assessment of the onset of wave breaking, via steepening of the bore front, and the associated654
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Figure 8: Comparison of surface elevations at t = 0.5 s for the flow over a step obtained with different schemes with ∆x = 0.2

m and analytical solution.
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energy losses, the wave runup on the dry bed, and the formation of hydraulic jump while the wave retreats655

due to gravity. These processes are all a consequence of the conservation of mass and momentum fluxes656

across the discontinuity in the flow [47].657

An additional numerical challenge is the wetting and drying processes while waves run up and down on658

the beach. Especially in the transition from wet to dry during the rundown process, prevention of negative659

water depths becomes relevant as these depths vanish. Whereas staggered schemes can freeze the mass flux660

out of a dry cell naturally, colocated schemes require special measures with respect to the computation of661

the outgoing numerical flux at the cell face between a dry and wet cell, such as the approximate Riemann662

solvers. For instance, Audusse et al. [7] modify the bed elevation and the water depth at the cell interface,663

for the purpose of a proper reconstruction of the left and right Riemann states, such that a negative water664

depth in the dry cell is avoided.665

A computational model was set up covering a length of 50d with d the still offshore water depth, and a666
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Figure 10: Comparison of free surface (top panel) and velocity (bottom panel) profiles at t = 7 s for the dam break wave in a

horizontal channel obtained with different schemes and analytical solution.

constant grid size of ∆x = 0.125d. The toe of the slope was located ten times the still water depth from667

the origin of the domain. Both ends of the domain were closed. Initially, the surface elevation ζ and the668

flow velocity ζ
√

g/d were prescribed based on a solitary wave profile with H/d = 0.3 [46]. Here, H denotes669

the initial wave height of the solitary wave. Furthermore, a fixed time step ∆t
√

g/d was chosen so that670

each method produced a stable solution until the end of the simulation: 0.06, 0.03 and 0.01 for schemes671

Stagg (ζ,u), Stagg U (h,q) and Stagg C (h,q), respectively. The corresponding maximum Courant672

numbers appeared to be 0.7, 0.4 and 0.3. All the schemes applied to this case were first order accurate in673

space.674

Figure 12 presents the comparison between simulated and measured water levels, normalized by the still675
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Figure 11: Comparison of bore fronts in the vicinity of transition from dry to wet at t = 7 s for the dam break wave in a

horizontal channel obtained with different schemes and analytical solution.
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offshore water depth, at four different dimensionless times t
√

g/d. The computed surface elevations were676

obtained with scheme Stagg (ζ,u). The front face of the solitary wave steepens continuously, caused by
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Figure 12: Computed and recorded surface profiles at different times for solitary wave on a sloping beach. Red dots: experi-

mental data of Synolakis [46]; blue thin line: scheme Stagg (ζ,u); black thick line: beach.

677

nonlinearities, until the front becomes vertical. This steepening must be balanced by the vertical accelera-678

tions. The solitary wave in the laboratory test breaks at a time between t
√

g/d = 20 and t
√

g/d = 25 [46].679

However, due to the lack of wave dispersivity, scheme Stagg (ζ,u) will predict a faster steepening of the680

bore front and consequently, the simulated bore will break prematurely. The model based on shallow water681

equations treats broken waves as hydraulic bores. The first panel of Figure 12 displays a well-kept vertical682

front face that exchanged momentum constantly with the quiescent water ahead and, in turn, the bore683

collapsed as depicted in the second panel. After breaking, the wave runs up the dry beach at t
√

g/d = 25684

to t
√

g/d = 45 [46]. The third panel of Figure 12 demonstrates the ability of method Stagg (ζ,u) to685

reproduce the runup motion accelerated at a proper rate near the shoreline. Rundown starts afterwards686

while a hydraulic jump is developed. The fourth panel of Figure 12 shows the computed hydraulic jump at687

the end of the rundown process, which was predicted with fairly good accuracy. From the last two panels,688

it is obvious that scheme Stagg (ζ,u) could cope with the dry to wet transition during runup and the wet689

to dry transition during rundown.690

Results of the other schemes Stagg U (h,q) and Stagg C (h,q) are depicted in Figures 13 and 14,691
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respectively. As seen, the computed results by scheme Stagg U (h,q) match the measured data reasonably
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Figure 13: Computed and recorded surface profiles at different times for solitary wave on a sloping beach. Red dots: experi-

mental data of Synolakis [46]; blue thin line: scheme Stagg U (h,q); black thick line: beach.

692

well. In contrast, method Stagg C (h,q) was not able to properly predict the runup and rundown processes.693

This is supported by the last two panels of Figure 14. Moreover, both schemes exhibit spurious oscillations.694

For instance, the fourth panel of both Figures 13 and 14 demonstrates (small) wiggles in the hydraulic695

jump during the rundown process. Furthermore, it is striking that scheme Stagg U (h,q) displays a sharp696

gradient in the front face of the bore while it runs up the beach (second and third panels of Figure 13).697

These observations confirm the inability of both methods to preserve the continuity of momentum flux in698

the discontinuous flow.699

7. Summary and perspectives700

The nonlinear shallow water equations may give rise to flow discontinuities that reflect physical phe-701

nomena like breaking waves in the surf zone, hydraulic jumps and bores. The numerical approach applied702

is crucial in this matter and should be able to capture such local features in rapidly varied flow with suffi-703

cient accuracy without losing robustness. Well established methods are the shock capturing finite volume704

Godunov-type schemes based on approximate Riemann solvers due to their successful performance in the705

field of gas dynamics. Such schemes require colocation of all the conserved variables.706
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Another class of numerical methods for solving nonlinear shallow water equations is related to the707

staggering of the primitive variables that provides simple and compact grid stencils needed for different708

equations that are solved together. This promotes accurate and efficient discretization of the governing709

equations. Staggered schemes are usually applied to gradually varied shallow water flows. However, as710

demonstrated in this paper, such schemes are also suitable for rapidly varied flows provided that the Rankine-711

Hugoniot jump relations for mass flux and momentum flux are fulfilled at the discrete level. Although these712

relations are utilized in gas dynamics to identify shock waves and to compute their speed, they can also713

be employed as jump conditions that must hold across any discontinuities, including hydraulic jumps and714

bores. Owing to the jump conditions, a two-point upwind discretization must be applied to the advection715

of momentum, which also generates numerical dissipation needed to avoid oscillations near discontinuities.716

One of the main objectives of this study was to assess the performance of three staggered schemes, em-717

ploying different sets of dependent variables, for the solution of the depth-integrated shallow water equations718

in one-dimensional domain. Three idealized 1D tests were selected to verify the accuracy and robustness of719

the discussed schemes. Furthermore, the three schemes were also applied to reproduce a laboratory test of720

Synolakis [46] concerning breaking, runup and rundown of a solitary wave on a sloping beach. The numerical721

results were compared with analytical solutions and laboratory measurements.722
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The discussed schemes make use of a staggered grid layout for the two dependent variables in both space723

and time: the water levels ζ or water depths h at cell centres and the depth-averaged or depth-integrated724

velocities at cell faces, u and q, respectively, while the elevation is evaluated before or after the flow speed725

within one time step. With the exception of the advection term, the remaining terms of the continuity and726

momentum equations are approximated by means of second order central differences. Due to staggering in727

time the temporal accuracy of these terms is second order as well. To achieve second order accuracy in both728

time and space with respect to the advection term, a predictor-corrector technique of the MacCormack type729

combined with a deferred correction approach [34] can be applied. Convergence tests confirm that the order730

of spatial and temporal accuracy tends to exhibit second order behaviour, if central differences are applied.731

The employed staggered schemes differ from one another in terms of the interpretation of the transport732

velocity related to the upwind discretization of the advection term: either the mass flux or the flow velocity.733

The associated momentum to be transported is the depth-averaged velocity (momentum per unit volume)734

and the depth-integrated velocity (momentum per unit area), respectively. We demonstrated that the former735

interpretation, i.e. upwinding of the depth-averaged velocity with its direction determined by the mass flux,736

performs better than the latter interpretation, i.e. upwinding of the depth-integrated velocity with its737

direction determined by the flow velocity. The key rationale behind this observation is the consistency with738

the incompressibility constraint while the shallow water equations are elliptic. The first mentioned method739

use the primitive variables ζ and u and has been designated as Stagg (ζ,u) in this study, whereas the latter740

mentioned method employs flux variables h and q, and is either Stagg C (h,q) or Stagg U (h,q).741

Another difference between the staggered methods concerns the approximation of the water depth at the742

cell face to either compute the mass flux or the flow velocity: the first order upwind or second order central743

approach. As expected, the second option is less robust but formally more accurate than the first option.744

This second option has been implemented in scheme Stagg C (h,q). In addition, the first option promotes745

a correct wetting and drying associated with non-negative water depths without distorting the time step,746

which is confirmed by the numerical tests. In fact, non-negative water depths can be assured if the Courant747

number based on the flow velocity, being the primitive variable, is below or equal one [24]. This avoids the748

necessity of involved wetting and drying algorithms. The first option − the upwind approach − has been749

realized in schemes Stagg (ζ,u) and Stagg U (h,q).750

The results of the analysis performed and the numerical tests demonstrated that complying with the751

Rankine-Hugoniot relations for the flux conservation of mass and momentum across a shock or discontinuity752

is a necessary condition to avoid the odd-even decoupling problem. To be more specific, any attempt to753

use any data, other than mass flux q, on either side of the discontinuity results in spurious modes, unless754

the jump conditions for the flux of mass and momentum are invoked. In addition, these jump conditions755

ensure that solutions are physically realistic (e.g. energy loss across the shock) and provide enhanced756

numerical stability. This was the second main result of the present work. Only scheme Stagg (ζ,u) fully757
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complies with the jump conditions, produces the correct amount of numerical viscosity at discontinuities,758

and reveals no evidence of odd-even oscillations in the numerical tests presented in this study. Because of759

the misinterpretation of the transport velocity and the transported momentum in the upwind discretization760

of schemes Stagg U (h,q) and Stagg C (h,q), strict fulfillment of the jump conditions can not be met,761

so that these schemes suffer from odd-even oscillations as confirmed by the tests. In addition, scheme762

Stagg C (h,q) lacks the robustness of the other schemes, and appears not to be suitable for the simulation763

of expansion flows and hydraulic jumps.764

The discussed schemes were presented and tested in one spatial dimension as their numerical properties765

could be clearly explained and illustrated in a transparent manner. Furthermore, such schemes may also be766

applicable for 1D free surface flows in rivers with variable width and depth. A similar approach is described767

in [48]. We will now briefly discuss extending numerical methods to two spatial dimensions in the finite768

volume perspective. Structured or unstructured meshes can be used to deal with this issue.769

As the concept of mass and momentum conservation is essentially not different for 1D and 2D flow770

systems, all the findings of the present study naturally carry over to the case of two-dimensional shallow771

water problems. Much of the rationale of the numerical approximation of shallow water equations in more772

than one independent variable can be derived as a natural extension of the material presented in this773

study. Applied to structured grids, this amounts to perform a dimension-by-dimension extension of 1D774

discretization of the governing equations in both x− and y−directions. Unstructured staggered schemes775

usually adopt the method of Perot [49] that reconstruct a full velocity vector in each cell circumcenter out776

of the cell face normal velocities. Subsequently, this cell-centred velocity vector is used to compute the full777

momentum vector at the face center from which a momentum balance in integral form can be derived that778

leads naturally to expressions suitable for finite volume discretization. They express the fluxes through every779

edge of the control volume and the discretization can be treated as a local 1D recurrence relation projected780

in the direction normal to the interface between adjacent cells of either primal or dual grid. In this respect,781

as in one-dimensional case, we assume that the solution everywhere in the control volume is constant and782

subsequently, the flux at each edge of the primal/dual cell is based on the ‘upwind’ value determined by783

the component of mass flux normal to the edge. It should be noted, however, that the reconstruction by784

Perot [49] involves averaging of the velocities which are later advected, and this may again lead to odd-even785

decoupling, if not carefully treated. In conclusion, accurate and robust 1D schemes are desired for the786

solution of both one- and two-dimensional problems concerning smooth and discontinuous flows.787

Based on the obtained results of the numerical experiments in this study, it can be concluded that 1D788

scheme Stagg (ζ,u) is the most accurate and robust scheme. As has been said, the extension of this789

recommended scheme to two dimensions is conceptually simple. The favorable properties of the 1D scheme790

are expected to be transferred to the resulting 2D method. Examples of the application of 1D scheme791

Stagg (ζ,u) for 2D modelling of large-scale shallow water flows on structured and unstructured staggered792
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meshes can be found in [22–24, 26]. Additionally, it has been successfully used for numerous applications in793

the simulation of breaking infragravity and short waves on sloping beaches; see, e.g. [50]. All these references794

demonstrated the accuracy and robustness of the 2D method, emanated from the 1D scheme Stagg (ζ,u),795

for the simulation of both gradually and rapidly varied shallow water flows.796
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