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Abstract

This paper aims to present the extension of the non-hydrostatic wave-flow model SWASH with the covolume

method to build discretization schemes on unstructured triangular grids. Central to this method that is

free of spurious pressure modes, is the use of dual pairs of meshes that are mutually orthogonal, such as the

Delaunay-Voronoi mesh systems. The approximants sought are the components of the flow velocity vector

normal to the cell faces of the primal mesh. In addition to the covolume approach, a novel upwind difference

scheme for the horizontal advection terms in the momentum equation is proposed. This scheme obeys the

Rankine-Hugoniot jump relations and prevents the odd-even decoupling of the velocity field accordingly.

Moreover, cases with flow discontinuities, such as steady bores and broken waves, are properly treated. In

spite of the low-order accuracy of the proposed method, unstructuredmeshes easily allow for local refinement

in a way that retains the desired accuracy. The unstructured-grid version of SWASH is applicable to a wide

range of 2DH wave-flow problems to investigate the nonlinear dynamics of free surface waves over varying

bathymetries. Its efficiency and robustness is tested on a number of these problems employing unstructured

triangular meshes.

Keywords: Shallow water flow, Nearshore waves, Triangular mesh, Finite difference, Covolume

discretization, SWASH

1. Introduction1

A commonly encountered coastal engineering application involves the simulation of dispersive waves in2

coastal waters. Waves are usually present almost everywhere in the domain of interest, while the wave3

dynamics can be dominant in a small part of the entire domain, e.g. the surf zone due to wave breaking4

and generating currents. For many large-scale wave problems, the mesh only needs to be concentrated in5

particular areas with strong wave features and large current gradients. Local mesh refinement is therefore6

a suitable approach to offer sufficient grid resolution in otherwise under-resolved areas (e.g. breaking zones,7

swash zones, wetlands, coastal flood defences).8
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The development to increase the flexibility of structured grid methods to allow variable grid resolution and9

local mesh refinement has a long history. Traditional ocean and coastal models usually employ curvilinear10

grids with domain decomposition techniques. Such grids are typically orthogonal so that the coordinate11

transformation offers advantages in solution algorithm efficiency, whereas undesirable numerical artefacts12

arising from grid non-orthogonality, high cell aspect ratio and skewness are avoided.13

Structured grids greatly facilitate the use of high-order discretization methods. Such methods provide14

a higher spatial accuracy and hence reduce the number of grid cells required for a given level of solution15

accuracy. Nevertheless, we argue that low-order discretizations on locally fine grids might be more efficient.16

Low-order upwind-biased schemes often exhibit desirable stability properties but may suffer from numer-17

ical damping, especially at relatively coarse grids, which can easily be counteracted by grid refinements.18

Furthermore, they only require small discretization stencils and often deliver a good scaling capability for19

high performance computing (HPC). In contrast, high-order discretization methods usually lack robustness20

as they have the potential to destroy the stability of the underlying numerical approach. In particular,21

central and high-order upwind discretizations tend to display non-physical oscillations and commonly result22

in instabilities.23

On the other hand, when local mesh refinement is applied to flow problems in water of finite depth,24

the accuracy is often limited by the error in topographic and forcing data rather than the discretization25

error [1]. Hence, grid refinement substantiates the benefit of low-order discretizations. Despite the fact26

that low-order (upwind) methods are typically deprecated in the literature, we believe that such methods27

are considered adequate for predicting wave processes including propagation, shoaling, refraction and wave28

breaking, provided that sufficiently fine meshes are employed. While such processes are governed by mass29

and momentum balances, this may not be true for the transport of contaminants in surface waters and30

variable density solute transport (e.g. salinity, temperature, sediment). That is to say, high resolution31

schemes are desired to avoid a detrimental loss of tracer concentrations [2].32

A drawback of structured meshes is the inherent difficulties associated with the generation of appropriate33

boundary-fitted grids and excessive grid refinement. The use of unstructured grids offers a remedy to these34

problems as they are more flexible and easily provide highly variable grid resolution in complex geometries.35

In this regard, the domain is commonly discretized into triangular or tetrahedral elements with no implied36

connectivity. Unstructured meshes have received great attention for the past several years in the ocean and37

coastal modelling community. A general review on this topic can be found in [3]. One principle feature of38

an unstructured grid is that advanced grid refinement techniques are easier to implement. Unstructured39

grid methods are therefore particularly suited for wave problems with complex geometries that require a40

reasonably non-uniform grid resolution. However, they do not allow for ease of implementation of high-order41

discretizations. Also, high-resolution schemes on unstructured grids usually do not take the full advantage42

of higher order accuracy that can easily be achieved on structured grids [2]. In fact, low-order methods for43
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unstructured meshes are still in use today in established codes [1]. In spite of this lower order accuracy, we44

premise that a higher rate of convergence is achieved by local grid refinement rather than use of high-order45

(central) discretizations.46

A common feature of the traditional numerical models employing unstructured meshes is the application47

of the finite volume method, which is a widely used approach in the CFD community. This method directly48

utilizes the integral formulation of conservation laws in divergence form which are subsequently discretized49

by means of flux approximations applied on non-overlapping control volumes in either primal or dual grids.50

Standard finite volume schemes thus have the benefit to discretely conserve unknowns of PDEs on arbitrary51

meshes. In the context of the solution of shallow water problems, such schemes typically involve the vertex-52

centred or cell-centred discretization of the conserved variables, i.e. the water depth and the depth-integrated53

velocity vector, on colocated and semi-staggered grids.54

Yet, low-order vertex-centred finite volume schemes are known to be rather inaccurate or even inconsistent55

on irregular grids (for details see, e.g. [4–6]). Such schemes require polygon-shaped duals that typically56

provoke highly distorted volumes. For instance, a detailed analysis of Svärd et al. [4] reveal that vertex-57

centred finite volume approximations yield order of accuracy less than one for non-smooth mixed grids of58

triangles and quadrilaterals. In particular, the non-uniformity in the size of dual mesh polygons results in59

a loss in discretization accuracy of one order. The cause is the differences in fluxes on opposite sides of the60

control volume that do not cancel in pairs when the mesh is non-uniform. It is likely that their capacity61

to achieve desired physical accuracy on irregular grids is rather restricted. On the other hand, the solution62

quality of a cell-centred finite volume scheme, operating on primal cells, can easily be greater than that of63

a vertex-centred scheme. However, cell-centred schemes incur larger overheads than vertex-centred schemes64

as they involve approximately twice as many unknowns. Therefore, we argue that low-order finite volume65

methods using unstructured meshes is less tractable for robust and efficient large-scale simulations of wave66

dynamics requiring high accuracy.67

Another class of numerical methods involves the use of staggered grids. In such grids the velocity68

components are staggered with respect to the pressure. The pressure is placed in the centre of the grid cells,69

while the velocities are stored at the cell faces. Contrary to colocated and semi-staggered grid schemes,70

staggered grid methods prevent the well-known odd-even decoupling between velocity and pressure which is71

typically the key ingredient to the development of robust and efficient incompressible flow models. Staggered72

finite difference methods were first developed by Harlow and Welch [7] for incompressible flows on Cartesian73

grids1 and has a long history of successful achievements in coastal and ocean modelling (see, e.g. [9–11]).74

A fruitful extension of the classical staggered grid approach to unstructured triangular and tetrahedral75

1Historically, the use of a staggered grid for the solution of the shallow water equations was first proposed by Richardson

[8] in 1922.
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meshes is the covolume method [12, 13]. This method is designed as a low-order method that does not76

encounter spurious pressure modes. The covolume method makes use of two dual orthogonal grids to77

approximate the flow velocity and pressure. In this respect, the Delaunay triangulation (primal grid) and78

the corresponding Voronoi diagram (dual grid) are the natural choice. Only the normal velocity components79

are defined on the faces of the primal mesh, whereas the pressure is stored at the vertices of the dual grid,80

i.e. the circumcentres of the primal cells. The accuracy of the covolume scheme is generally first order81

in space but can be second order accurate for a regular mesh [14]. However, more importantly, covolume82

techniques usually respect underlying physical principles due to a range of fundamental properties, such as83

topology, conservation and symmetry, leading to the development of high-fidelity discretization methods for84

incompressible Navier-Stokes and Maxwell’s equations [15, 16]. The effect of discretization error originated85

from such discretization approximations is thus limited, in that the numerical solution is merely influenced86

by the mesh resolution and mesh quality.87

Over the past two decades, the covolume method, frequently referred to as the unstructured C-grid88

discretization, has been successfully employed for the modelling of large-scale ocean and coastal flows. See,89

for instance, Perot and Nallapati [17], Stuhne and Peltier [18], Kramer and Stelling [19] and Kleptsova90

et al. [20]. Additionally, regional coastal and estuarine ocean models like UnTRIM [21], SUNTANS [22] and91

D-Flow FM [23] are widely used by many researchers. Both UnTRIM and SUNTANS can also be applied to92

include non-hydrostatic dynamics for environmental flow problems (e.g. internal waves and oceanic fronts).93

SWASH is a non-hydrostatic wave-flow model developed at Delft University and exploits the finite94

difference method on staggered Cartesian grids [24]. This phase-resolving model has been subjected to95

extensive benchmarking and has been successfully applied to a numerous wave and flow applications. Recent96

examples can be found in [25–28]. The present work describes the extension of SWASH to unstructured97

triangular grids. To this purpose, we adopt the covolume strategy because of the wish to maximize the98

physical accuracy, stability and efficiency of the numerical wave simulation. The focus of the present study99

is on tailor-made discretizations suitable for the simulation of wave dynamics. They ensure the correct100

handling of discontinuities and shocks as manifested in bores, hydraulic jumps and broken waves.101

In what follows, the shallow water equations including non-hydrostatic pressure are introduced in Sec-102

tion 2. In order to facilitate transparency on discretization schemes, the governing equations are presented103

in a depth-averaged form. Next, the concept of the covolume approach and its numerical implementation104

are treated in Section 3. Special attention is paid to the discretization of momentum advection based on105

a genuinely upwind-biased approach that guarantees conservation of momentum flux locally. The key con-106

tribution of the present study is to demonstrate the efficiency and robustness of the proposed method for107

wave-related simulations. In Section 4 a number of test cases are presented for validation purposes and the108

results are discussed. Conclusions are provided in Section 5.109
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2. Governing equations110

The governing two-dimensional, primitive variable equations for the depth-averaged, non-hydrostatic,111

free surface flow of an incompressible fluid over a bed topography d(x, y) are given by112

∂ζ

∂t
+∇ · q = 0 (1)

113

∂hu

∂t
+∇ · (q⊗ u) + gh∇ζ = −

∫ ζ

−d

∇p dz − cfu‖u‖ (2)

with the coordinate directions x, y and z aligning in the east, north, and vertical directions, respectively.114

The bed level d(x, y) is measured from the reference level z = 0 (positive downwards), whereas ζ(x, y, t)115

is the surface elevation with respect to the reference level (positive upwards). The water depth is given116

by h(x, y, t) = ζ(x, y, t) + d(x, y). Furthermore, u = (u, v) is the flow velocity with the depth-averaged117

components u(x, y, t) and v(x, y, t) along the x and y coordinates, respectively, q = hu is the mass flux,118

p(x, y, z, t) is the non-hydrostatic pressure (normalised by the density), g is the gravitational acceleration,119

and cf is the dimensionless bottom friction coefficient. The shallow water equations (1) and (2) are derived120

from integrating the mass conservation and the momentum balance over the depth, respectively, whereas121

the total pressure is decomposed into its hydrostatic and non-hydrostatic components (see, e.g. [21, 22, 24]).122

In the case of a hydrostatic pressure distribution, i.e. p ≡ 0, these equations can be reformulated as a set of123

nonlinear hyperbolic equations, and may thus generate discontinuous solutions featuring shock waves [29].124

Such solutions can readily be understood as weak solutions in the variational context.125

Using Leibniz’ rule, a conservative expression for the gradient of non-hydrostatic pressure is obtained126

[30]127

∫ ζ

−d

∇p dz =
1

2
∇ (hpb)− pb∇d

with pb the non-hydrostatic pressure at the bed. This pressure is associated with the vertical motion that128

is governed by the following equation129

∂ws

∂t
=

2pb
h

− ∂wb

∂t

where ws is the velocity in the z−direction at the free surface. This equation is derived using the Keller-box130

method to further improve the dispersive behaviour of the waves [24, 30]. The vertical velocity at the bed131

wb can be found by means of the following kinematic condition132

wb = −u · ∇d at z = −d

Finally, the system of equations is complete with the following equation133

∇ · u+
ws − wb

h
= 0 (3)

which ensures conservation of local mass.134
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The momentum equation (2) is symbolically written in vector form which is not the most natural form to135

describe the underlying physics in wave-dominated regimes. Instead, we consider the following momentum136

balance characterizing the flow below a free surface in water that moves in a nominal downstream direction137

defined by the unit vector nf ,138

∂huf

∂t
+ [∇ · (q⊗ u)] · nf + ghnf · ∇ζ = −1

2
nf · ∇ (hpb) + pb nf · ∇d− cfuf‖u‖ (4)

with uf = u ·nf the local streamwise, depth-averaged flow velocity. Vector nf is assumed to be slowly varied139

such that pressure gradients redirect momentum through bends whereas the flow velocity uf is aligned with140

the direction of the pressure forces. Furthermore, the lateral variability in the free surface slope is negligible141

on the scale of flow induced motion, especially in coastal regions [31].142

The depth-integrated momentum equation (4) essentially describes a local balance between flow accel-143

eration, frictional deceleration and the pressure force acting on an element of fluid along streamlines, and144

governs momentum per unit volume normalised by the density, i.e. uf . The mass flux q is the transport145

velocity of momentum and the second term of Eq. (4) represents the advective acceleration of the flow field146

with a nonlinear spatial effect on uf . For instance, it causes the change in the momentum in an open channel147

due to expansion or contraction, i.e. slowing down or speeding up the fluid locally. Such flow transitions148

are typically rapid and frequently arise in hydraulic jumps, dam breaks, tidal bores and flows over a weir.149

3. Discretization on unstructured triangular meshes150

This paper is not intended to provide an outline of the overall numerical methodology of SWASH,151

but rather to explain the essential steps of the discretization of the governing equations on unstructured152

staggered grids since this topic differs from the structured-grid version of SWASH as described in Zijlema153

et al. [24]. Therefore, the discussion on temporal discretizations and the solution procedure is not included154

in the present study as they have been previously treated in depth (in, e.g. [24]).155

The starting point is that the flow velocities are segregated from the surface elevation and non-hydrostatic156

pressure and are assigned to different grid locations based on a staggered grid arrangement. This is further157

discussed in Section 3.1. Note also that the solution of non-hydrostatic pressure is not pursued herein.158

The interested reader is referred to the aforementioned reference for detailed description of the pressure159

correction technique aiming to enforce local mass conservation. Section 3.2 outlines the concept of the160

covolume scheme for spatial discretization. The implementation of this method in SWASH is elaborated161

in detail in Section 3.3. Next, the discretization of the advective acceleration is dealt with in Section 3.4.162

Finally, a simple wet-dry scheme is treated briefly in Section 3.5.163
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3.1. Staggered grid164

Staggered grid methods typically employ velocity components as the primary discrete unknowns in the165

spatial discretization. In this respect, the flow velocity component uf is a proper one. This physical variable166

is located at the face midpoint in the direction nf normal to the cell face, whereas the physical scalars167

(e.g. water depth, pressure) are positioned at the cell circumcentre. As a result, the flow velocity normal168

through the face of the grid cell is influenced directly by the water depth and non-hydrostatic pressure at169

the circumcenters on either side, because it is the pressure gradient that drives the flow. In addition, the170

change in volume cell, confined by the surface elevation, is due to the mass fluxes huf at the faces of the171

grid cell. This physical duality expresses a natural property of the staggered mesh approach.172

Staggered schemes thus require the existence of the cell circumcentres since the line segment connecting173

the circumcentres of the two cells intersects with their shared face, while they are orthogonal to each other.174

The most common polygons with a unique circumcenter are the triangles and rectangles. Furthermore, any175

two non-colinear sides of such cells span a basis in R
2. (Note that the third side of a triangle is a linear176

combination of the other two sides.) This implies that the velocity vector u (momentum per unit volume177

normalised by the density) at an arbitrary location within the cell can be described by a linear combination178

of the normal components uf at the cell faces; see also next section. However, in the case of rectangles, both179

independent velocity components, u and v, are required to characterize momentum in the two dimensional180

space due to their mutual orthogonality.181

3.2. The covolume method182

The main merit of the above staggered treatment of the primitive variables is the proven robustness183

and efficiency as these variables are located in optimal positions on the mesh with two unique consequences.184

First, it prevents the odd-even decoupling between the pressure and the normal velocity component. Second,185

it yields excellent conservation properties. For example, both primary (mass and momentum) and secondary186

(e.g. kinetic energy and enstrophy) quantities are conserved by Cartesian staggered grid methods for the187

incompressible Navier-Stokes equations (see, e.g. [14, 32, 33]). The conservative behaviour of staggered188

schemes is due to the discrete divergence and gradient operators that mimic the physical properties of their189

continuous counterparts. As a consequence, the physical accuracy is preserved at the discrete level. In this190

context, the staggered discretization is classified as the mimetic approach [15].191

The covolume method [12, 13] is one of the many mimetic discretizations that have appeared in literature,192

of which an excellent overview is given by Lipnikov et al. [15]. The mimetic character of discrete covolume193

operators provides conservation properties in the resulting numerical methods. For instance, the local and194

global conservation properties of the covolume scheme applied to the incompressible Navier-Stokes equations195

have been extensively examined by Perot [14] and Zhang et al. [34].196
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The covolume method usually requires two orthogonal meshes to compute the change in mass and197

momentum of shallow water flows. The Delaunay mesh and its dual, the Voronoi tessellation, are the198

obvious choice. The vertices of the Voronoi mesh are the circumcentres of the Delaunay cells. Like the199

Cartesian staggered approach, only the normal vector component is employed at the face midpoint of the200

primal grid and the pressure is consequently defined at the cell circumcentres, i.e. the vertices of the dual201

grid. In contrast, for instance, the method implemented in ELCIRC [35] is not based on the covolume202

approach as it requires the solution of the velocity component tangential to the cell face. Such a semi-203

staggered scheme can give rise to erroneous pressure-velocity oscillations [36]. In general, preservation of the204

key physical variables, i.e. the pressure at the cell centre and the normal velocity component uf at the cell205

face rather than the full momentum vector u, in distinct discrete structures such as primal and dual meshes206

is crucial to prevent non-physical artefacts. (See Tonti [16] for details on the central role of the relationship207

between physical variables and mesh topologies, i.e. points, lines, surfaces and volumes, in computational208

physics.) In addition, vector fields can be reconstructed by means of an interpolation method. Examples209

related to triangular meshes can be found in [37–40].210

It is important to note that the use of covolume or C-grid discretizations might be problematic for211

the simulation of geophysical flows [41]. For instance, spurious geostrophic modes may occur on both212

structured and unstructured meshes in the presence of the Coriolis force and varying bathymetry. A proper213

reconstruction of the tangential velocity is the key solution to this problem [39]. Furthermore, three-214

dimensional hydrostatic models for resolving large-scale baroclinic currents tend to exhibit checkerboard215

pattern in the divergence of the horizontal velocity field, and hence in the vertical velocity (cf. Eq. (3)), due216

to the combined use of triangular geometry, notably equilateral triangles, and variable staggering [41, 42].217

Some remedies have been put forward in alleviating this problem such as divergence averaging, increased218

diffusion, filtering and mimetic discretizations (see, e.g. [42–44]), though the unwanted modes are usually219

not entirely absent. Nevertheless, such checkerboard modes have not been encountered in the numerical220

wave simulations as presented in this study. Therefore, no further attention will be paid to this issue in this221

paper.222

Although the covolume method is known to be first order accurate for general unstructured meshes and223

second order for a class of regular grids2, it yields physically consistent solution to the governing PDEs.224

Furthermore, discretizations should reflect accurate changes in the response of the water wave motion to225

advective acceleration and pressure gradient and, in turn, bathymetric forcing. From this perspective,226

we postulate that low-order mimetic discretizations are a viable alternative to high-order finite-volume227

discretization schemes, including colocated and semi-staggered ones employing the full momentum vector228

2Formally speaking, the discretization error for the pressure gradient term is second order in space if the circumcentres of

two adjacent cells are equally spaced from the shared face.
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as the primary unknown. Despite their higher order accuracy, numerical methods that do not meet certain229

physical and mathematical properties can produce unacceptably large errors due, principally, to the presence230

of nonphysical parasitic modes and the nonlinear amplification of such modes and discretization errors [32].231

The above reasoning motivates the implementation of the covolume scheme in SWASH which is presented232

in the next section.233

3.3. Covolume discretization234

We consider a two-dimensional grid consisting of Delaunay triangles. Note that the faces in the dual235

mesh are orthogonal to the cell faces in the primal mesh. Let indices c and f enumerate triangular cells and236

faces, respectively. In the discretization approach we denote Sc the set of faces forming the boundary of237

cell c and vector nc,f the outward-pointing normal to face f of cell c. Rather than employing the outward238

normal, the unit normal to face f coincided with the streamwise direction nf is adopted. Since this normal239

can either be outward or inward with respect to cell c, we select one of its direction to be fixed at all faces in240

the grid, so that uf · nf = uf with uf the velocity vector at face f . The mutual orientation of the outward241

normal nc,f and the unique normal nf at face f of cell c is given by (cf. Figure 1)242

nc,f = αc,f nf , αc,f = nc,f · nf = ±1

The continuity equation (1) is integrated over a cell c as follows243

∫

c

(

∂ζ

∂t
+∇ · q

)

dA = 0

Application of the midpoint rule and the divergence theorem of Gauss yields244

Ac

dζc
dt

+

∮

∂c

q · nc dl = 0

with ζc the water level stored at the cell circumcentre, Ac the area of cell c and nc the outward unit normal245

vector to cell boundary ∂c. The integral is approximated by taking the sum over the faces of the cell246

∮

∂c

q · nc dl ≈
∑

f∈Sc

qf · nf (nc,f · nf ) lf =
∑

f∈Sc

αc,fQf

where Qf = qf · nf lf is the mass flux integrated along cell face f with lf the corresponding length. Note247

that αc,fQf is negative if qf directs into cell c, otherwise, it is positive. (See Section 3.5 for further details248

on the mass flux.) The resulting semi-discrete scheme for Eq. (1) is249

Ac

dζc
dt

+
∑

f∈Sc

αc,fQf = 0 (5)

Next, the momentum equation (4) is solved at the faces of each interior cell. The approach to follow is250

essentially a finite difference method as the spatial discretization will be carried out directly for the equation251

instead of its integral form expressing the conservation balance of momentum.252
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Figure 1: The layout of the triangular mesh for the discretization of the momentum equation at face f for uf > 0. This face

with length lf is shared by two triangle cells cL and cR with distance ∆sf between the associated circumcentres. Also depicted

are the unit outward-pointing normal ncL,k to face k of cell cL and the unit normal vector nk indicating the flow direction.

The normals are constant along each face. Definitions of various geometric quantities and variables are provided in the text.

Figure 1 shows cell face f and its two adjacent cells cL and cR, with the subscripts indicating the position253

of the cells with repect to the face. The distance between the associated circumcentres is given by254

∆sf = ∆scL,f +∆scR,f

with ∆sc,f the distance from the circumcentre of cell c to face f . We compute the rate of change of the255

streamwise momentum per unit face length between two circumcentres adjacent to face f , i.e. ∆sfhfuf ,256

with uf the velocity component normal to face f and hf the water depth at face f . This is determined by,257

amongst others, the pressure forces acting on the area ∆sf (per unit face length) and the advective flow258

acceleration altering spatially the momentum in the upstream part of the area, i.e. ∆sc,fhfuf (per unit face259

length), either with c = cL (if uf > 0) or c = cR (if uf < 0). This upwind bias ensures the stability of the260

present method since it inherits certain physical conditions, as we will see in the next section.261

By virtue of the mesh orthogonality property, we obtain the following finite difference form262

∆sf
dh̃fuf

dt
+∆sc,f af + ghf (ζcR − ζcL) = −1

2
(hcRpcR − hcLpcL) + p̃f (dcR − dcL)− cf∆sfuf‖ũf‖ (6)

where af is the component of momentum advection in the streamwise direction. This will be treated in263

Section 3.4. Furthermore, pc, hc and dc denote the pressure, the water depth and the bed level located264

at the circumcentre of cell c, respectively. Finally, h̃f , hf , p̃f and ũf are the interpolated water depths,265
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non-hydrostatic pressure and velocity vector at face f , respectively; see below. Note that subscript b has266

been dropped from the pressure variables. It is worth noting that, owing to the mesh orthogonality, the267

discrete pressure gradients of Eq. (6) and the discrete divergence of the mass flux, Eq. (5), are mutually268

adjoint. This duality contributes to the robustness of the covolume method (see, e.g. [15] for details).269

We now provide appropriate interpolations for hf , pf and uf , respectively. Let us consider a flow across270

an abrupt bed change at cell face f . A condition that must be met is the hydrostatic balance between the271

(hydrostatic) pressure flux and the topography term272

1

2
g [h]

2

f = g hf [d]f

where the operator [·]f denotes the jump across face f . This condition preserves the quiescent water over273

varying bathymetry, i.e. u = 0 and ζ = constant. Hence, Eq. (6) reduces to274

ghf (ζcR − ζcL) = 0

By defining275

hf =
1

2
(hcL + hcR)

we have276

g hf (ζcR − ζcL) =
1

2
g (hcL + hcR) (hcR − hcL + dcL − dcR) = 0 (7)

so that277

1

2
g
(

h2

cR
− h2

cL

)

= g hf (dcR − dcL)

which is the hydrostatic balance at the discrete level.278

Next, h̃f in the time-derivative term of Eq. (6) represents the volume per unit area at face f . Hence, for279

consistency, we define280

∆sf h̃f = ∆scL,fhcL +∆scR,fhcR

Likewise, the non-hydrostatic pressure at face f is approximated by taking the volume-weighted average of281

the pressures of the two cells adjacent to the face282

p̃f =
∆scL,f
∆sf

pcL +
∆scR,f

∆sf
pcR

Since the covolume scheme employs the face normal velocity components uf , a velocity vector u = (u, v)283

needs to be reconstructed from these components. One reconstruction method is due to Perot [14] and284

computes the cell-based velocity vector uc by means of the divergence theorem. The result is given by285

uc =
1

Ac

∑

f∈Sc

lf∆sc,f uf nf (8)

which expresses the cell velocity vector in terms of the normal velocity components at the faces of the cell.286

Perot [14] argued that computing the cell-based velocity vector by means of interpolation (8) implies discrete287
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conservation of momentum (see also Appendix A). This interpolation is first order accurate and second order288

if the grid is regular. An alternative is the method proposed by Vidovic [38] using a least squares technique289

which provides better accuracy, but is rather involved and computationally demanded. We therefore prefer290

the use of Perot’s interpolation scheme (see also [44]). Finally, the velocity vector at the face can be found291

as the volume-weighted average of the cell-based vectors of the two cells adjacent to the face, as follows292

ũf =
∆scL,f
∆sf

ucL +
∆scR,f

∆sf
ucR

3.4. Discretization of momentum advection293

In [45], the incorporation of the Rankine-Hugoniot jump relations in a numerical scheme is devised to294

preclude the odd-even decoupling in the velocity field. In addition, fulfillment of these jump conditions is295

desired to accurately capture flows with discontinuities. In this regard, the advective flow acceleration is296

projected on the direction nf at face f representing a local shock,297

af = ac · nf

with ac the upstream cell-based advection vector. The manner in which this nonvolumetric vector is to be298

determined is closely linked to the fulfillment of the jump conditions at the discontinuity. More specifically,299

consider steady, frictionless flow across a jump at face f , under the assumption of hydrostatic pressure, then300

Eq. (6) becomes301

∆sc,f af + ghf (ζcR − ζcL) = 0 (9)

and ac is constructed such that Eq. (9) reduces to the following Rankine-Hugoniot relation302

[

qu+
1

2
gh2

]

f

= ghf [d]f (10)

with q the mass flux per unit width. This will improve physical accuracy at the discrete level since the303

balance between the advective acceleration and the pressure gradient is respected. Additionally, such a304

scheme remains accurate on coarse meshes, whereas any consistent scheme that does not adhere to jump305

conditions explicitly converges relatively slower to a weak solution. Examples where such a latter scheme306

has been employed are [14, 22, 23]. Thus, fulfilling the Rankine-Hugoniot condition (10) has the potential307

to further enhance the robustness and efficiency of the numerical method [45].308

To achieve the desired jump condition at face f , we use one-sided discretizations for momentum advection309

[45]. First, we consider a cell c upwind of face f whereby velocity uf is pointing out of the cell. Let choose310

this cell cL, i.e. uf > 0 (cf. Figure 1). Vector acL is the cell-based advection vector of the upwind cell and311

is computed using Gauss’ theorem312

acL =
1

AcL

∫

cL

∇ · (q⊗ u) dA =
1

AcL

∮

∂cL

q · ncL u dl ≈ 1

AcL

∑

k∈ScL

q · nk (ncL,k · nk) ûklk

=
1

AcL

∑

k∈ScL

αcL,kQk ûk
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The transported flow velocity vector ûk at the faces k of cell cL is obtained by means of a one-sided313

interpolation (see, e.g. [19, 20])314

ûk ≈ ucL,k

with ucL,k
the cell-based velocity vector of the upwind cell cL of face k (see Figure 1; keep in mind that315

uf > 0). In turn, this cell-based velocity vector is interpolated from face normal components using Eq. (8).316

Finally, we arrive at the following expression for the face normal component of momentum advection317

af =
1

AcL

∑

k∈ScL

αcL,kQk ucL,k
· nf (11)

Approximation in the case of negative flow, i.e. uf < 0, is done similarly. This completes our discretization318

of the momentum advection.319

We now demonstrate that jump condition (10) is indeed fulfilled. Substituting Eq. (11) in Eq. (9) and320

using Eq. (7) gives321

∆scL,f
AcL

∑

k∈ScL

αcL,kQk ucL,k
· nf +

1

2
g
(

h2

cR
− h2

cL

)

= ghf (dcR − dcL)

Let k1, k2 and f denote the faces of the upwind cell cL, see Figure 1. Expansion results in322

−∆scL,f
AcL

Qk1
ucL,k1

· nf − ∆scL,f
AcL

Qk2
ucL,k2

· nf +
∆scL,f
AcL

Qf uf +
1

2
g
(

h2

cR
− h2

cL

)

= ghf (dcR − dcL)

since ucL,f
· nf ≈ uf · nf = uf . Furthermore, let designate323

qk =
∆scL,f
AcL

Qk

the rate of volume flow per unit width of the upwind cell. Hence, we have324

qfuf −
(

qk1
ucL,k1

+ qk2
ucL,k2

)

· nf +
1

2
g
(

h2

cR
− h2

cL

)

= ghf (dcR − dcL)

which is the Rankine-Hugoniot jump condition at the discrete level. Note that this condition holds on face325

f representing the discontinuity, whereas the first two terms express the jump upstream of that face.326

For reasons of efficiency, Eq. (6) is not solved as it stands, but the solution of an equation for flow velocity327

uf is considered instead. For the purpose of deriving this equation, the right hand side of Eq. (6) is set to328

zero. Furthermore, we consider the case of positive flow at face f , i.e. uf > 0. We obtain329

∆sf h̃f

duf

dt
+∆scL,f

dhcL

dt
uf +∆scL,f af + ghf (ζcR − ζcL) = 0

as the outflow at face f only alters the water depth upstream. Next, substituting Eq. (5) yields330

∆sf h̃f

duf

dt
−∆scL,f

∑

k∈ScL
αcL,kQk

AcL

uf +∆scL,f af + ghf (ζcR − ζcL) = 0
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and subsequently, the component of momentum advection af . We then have331

∆sf h̃f

duf

dt
+∆scL,f

∑

k∈ScL

αcL,kQk

(

ucL,k
· nf − uf

)

AcL

+ ghf (ζcR − ζcL) = 0

The outgoing flux at face f can be omitted without changing the amount of momentum because ucL,f
·nf =332

uf . Hence, including the right hand side of Eq. (6), the final semi-discretized momentum equation is given333

by (cf. Figure 1)334

duf

dt
+

∆scL,f

∆sf h̃f AcL

[

Qk1

(

uf − ucL,k1
· nf

)

+Qk2

(

uf − ucL,k2
· nf

)]

+ g
hf

h̃f

ζcR − ζcL
∆sf

=

− 1

2h̃f

hcRpcR − hcLpcL
∆sf

+
p̃f

h̃f

dcR − dcL
∆sf

− cf
uf‖ũf‖

h̃f

(12)

A similar semi-discrete equation can be derived for the case with negative flow (uf < 0). Note that the335

current discretization differs from the one proposed by Kramer and Stelling [19] in that it is able to resolve336

flow discontinuities more accurately. This is demonstrated in Section 4.2.337

An attractive characteristic of the resulting finite difference approximation, apart from preserving phys-338

ical accuracy, is that it ensures total momentum is conserved at the discrete level. Such a mathematical339

property is desired to keep the overall discretization error low by eliminating the conservation errors. A340

proof is given in Appendix A.341

3.5. Wetting and drying342

The mass flux integrated along a cell face in Eq. (5) is evaluated with343

Qf = qf · nf lf = lf ĥf uf

where ĥf is the water depth approximated at face f . Since the water depth is stored at the circumcentres344

an upwind-biased interpolation is applied, as follows345

ĥf =











































ζcL +min (dcL , dcR) , if uf > 0

ζcR +min (dcL , dcR) , if uf < 0

max (ζcL , ζcR) + min (dcL , dcR) , if uf = 0

(13)

so that the water depth in the outgoing mass flux of any cell is that of the cell itself. As a consequence, a346

sufficient condition to guarantee a non-negative water depth in cell c can be derived. Details can be found347

in Kramer and Stelling [19]. This condition is given by348

∆t lf |uf | ≤ Ac

and so it forces at most one cell per time step to be flooded.349
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If a wet cell becomes dry, the water depth in the cell can be arbitrary small, while there is no outgoing350

mass flux. The flow velocity at face f is then set to zero if ĥf < δ with δ the threshold depth (δ = 10−10 m351

in the present study), while momentum equation (12) is not solved. This completes our description of the352

wet-dry algorithm.353

4. Test cases354

4.1. Introduction355

This section presents results for four test cases with an increasing degree of difficulty in the unstructured356

mesh configuration. With the exception of the first case, the selection of these cases was motivated by the357

wish to investigate the main features of the nearshore wave dynamics, such as wave transformation due to358

shoaling, refraction, diffraction and runup, and nonlinear processes, in particular the resonant three-wave359

interaction and depth-induced breaking. The objective is to assess the ability of the present unstructured360

staggered mesh approach to reproduce these wave processes with an emphasis on predictive accuracy. The361

predictive performance of SWASH for simulating these wave-related cases on rectangular grids is well doc-362

umented in, e.g. [24, 46, 47]. The first academic test case is added to this study to verify the numerical363

accuracy with which the momentum advection is approximated.364

Some brief remarks are given here in relation to marching in time and imposing boundary conditions.365

The semi-discrete equations (5) and (12) are integrated in time using a second order explicit leapfrog scheme366

in conjunction with the explicit Euler method for the advection term and the implicit Euler method for the367

non-hydrostatic pressure term [24]. For stability reasons the time step is restricted to comply with the CFL368

condition that depends on the wave celerity. This condition is given by369

Cf =

∆t

(

√

gh̃f + |uf |
)

∆sf
≤ 1

with ∆t the time step and Cf the Courant number evaluated at a face midpoint. A variable time step is370

employed so that the Courant number is less than a prescribed number (< 1) in all wet faces. The balance of371

experience derived from our various wave-related studies suggests that this route has emerged as providing372

the best compromise in terms of accuracy and stability. For further details on the time integration see373

Zijlema et al. [24].374

Furthermore, boundary conditions considered here pertain mainly to the generation of incident free short375

waves and bound infragravity waves. They are imposed as weakly reflective at the offshore boundary. Details376

on their implementation can be found in [24, 47].377

As a final note, the staggered mesh method described in this paper will soon be released in a future378

version of SWASH (http://swash.sourceforge.net), though the source code and a detailed description of the379

implementation can be obtained from the author upon request.380
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4.2. Dam break over wet bed381

The aim is to demonstrate the accuracy with which flow discontinuities are reproduced using the proposed382

upwind scheme outlined in Section 3.4 and the scheme of Kramer and Stelling [19] for the momentum383

advection. We consider an unsteady flow with propagation of a dam break wave in a horizontal frictionless384

channel. The pressure is assumed to be hydrostatic. The length and the width of the basin was 100 m and385

10 m, respectively, whereas the dam was initially located in the centre of the basin. The initial upstream386

water depth was 1 m, and the downstream water depth was set to 0.1 m. The velocity was initially zero.387

The rather uniform triangular mesh employed has an averaged grid size of 0.4 m, whereas the time step was388

set to 0.01 s.389

At time t = 7 s after dam failure, the model results of the two schemes are depicted in Figure 2. Also390

shown is the analytical solution. The results obtained with the proposed scheme are in better agreement
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Figure 2: Comparison of free surface (top panel) and velocity (bottom panel) profiles at t = 7 s for dam break over wet bed

obtained with different schemes and analytical solution.

391

with the analytical solution than the scheme of Kramer and Stelling [19]. In particular, the simulation shows392

that a correct speed and height of the bore was virtually rendered by the proposed scheme that satisfies the393

Rankine-Hugoniot jump conditions.394

4.3. Wave deformation by a submerged shoal395

In this test case, the UnSWASH model is applied to study wave propagation over a submerged shoal on396

a sloped bottom. The experimental arrangement conducted by Berkhoff et al. [48] has served as a classical397

test case for this study. The simulation is considered in a basin of 20 m wide and 35 m long with a plane398
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slope of 1/50 on which an elliptic shoal is rested. A monochromatic, unidirectional wave with a period399

of 1 s and a height of 4.64 cm enters the area and allows to propagate throughout the domain. Detailed400

information on the bathymetry and the wave conditions can be found elsewhere (e.g. [30, 48]).401

The domain was meshed at a resolution in between 0.03 m and 0.07 m, with a total of approximately402

370,000 triangular elements. The mesh is quite uniform as the dominant waves are present everywhere in403

the domain. Furthermore, it is relatively coarse with 20 to 50 grid cells per incident wave length, while404

the wave length becomes smaller on the slope and shorter waves are generated over the shoal. The time405

step was taken initially as 0.005 s. The maximum Courant number was set to 0.8 and the simulation time406

equaled 30 s.407

First, a few words concerning the computational efficiency. The performance of the unstructured-mesh408

version of SWASH is compared to the structured-grid version. The serial mode simulations were run on409

an Ubuntu 16.04 desktop with a 64-bit Intel Xeon processor (2.3 GHz). The execution time of UnSWASH410

needed for the current case appeared to be about 108 CPU minutes, with the highest level of resource411

required by the solution of the pressure Poisson equation. Furthermore, the total CPU time per grid cell per412

time step required for UnSWASH was approximately 2.7 µs, whereas for the regular-grid SWASH was about413

1.8 µs. This increase in the computation time is probably due to the overhead related to unstructured mesh414

data structure access, causing low cache efficiency. It is clear that high-resolution UnSWASH must utilize415

HPC resources in order to be scalable and efficient. A parallel code will be build using message-passing416

paradigms and will be tested on a commodity computer cluster. This will be reported in a future paper.417

Attention is turned next to the comparison between the computed and observed normalised wave heights418

shown in Figure 3. Wave heights were measured along eight transects at regular intervals (see [48] for details),419

of which four interesting ones are considered in the present study. The wave focussing in the wake of the shoal420

(transects 2 and 4), the wave shoaling and refraction on the slope (transects 6 and 7), and the interference421

pattern caused by diffraction (transect 4) are well captured by the model, despite the use of low-order422

discretizations. In addition, these results are in good agreement with previously computed results discussed423

by Stelling and Zijlema [30].424

4.4. Breaking waves over a barred topography425

The laboratory flume test of Boers [49] is considered with random waves propagating over a barred sandy426

beach (see Figure 4). The case 1C is discussed with waves generated at the wavemaker based on a target427

JONSWAP spectrum with a significant wave height of 0.103 m and a peak period of 3.33 s. This case has a428

relatively low wave steepness, while waves shoal over the sloping bottom until they break in the surf zone.429

For detailed analysis on this test case including the infragravity wave dynamics, see Rijnsdorp et al. [47].430

The computational domain is 32 m long and 1 m wide. The non-uniform unstructured grid employed431

in the present test case consists of approximately 12,000 triangles with the cell size varying in between 0.2432
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Figure 3: Computed (solid line) and measured (circles) relative wave heights along four transects for the wave over submerged

shoal. H0 is the incident wave height.
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Figure 4: Bottom topography and location of the selected wave gauges of the experiment of Boers (1996).

m offshore and 0.01 m near the coast. This mesh resolution should provide an economical representation of433

the bathymetric variability in the considered area, while the numerical approach must remain accurate in434

the presence of relatively large depth gradients. An initial time step of 0.004 s was taken with a maximum435

Courant number of 0.5. This time step turned out to be unchanged throughout the simulation. Since the436

present simulation is depth averaged, the so-called hydrostatic front approximation (HFA) of Smit et al.437

[46] is employed. Implementation details can be found in Appendix B. Furthermore, a friction coefficient438

cf = 0.001 was adopted. At the offshore boundary, a weakly reflective condition is imposed based on the439

recorded time series of surface elevation at the most seaward located wave gauge.440

Figure 5 compares the computed and observed significant wave heights Hm0 = 4
√
m0 and mean wave441

periods Tm01 = m0/m1 of short waves. The moments mn =
∫

fnE(f) df are computed from the energy442
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Figure 5: Computed and measured significant wave heights (left panel) and mean wave periods (right panel) along the flume

for Boers 1C. Bullets: experimental data; solid line: UnSWASH.

density spectra E(f) (with f frequency) of the surface elevation. Clearly, the trend of the integral wave443

parameters throughout the domain is well reproduced by the model.444

Next, we compare the computed wave spectra with the observed ones in Figure 6. The location of the
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Figure 6: Observed (thick line) and predicted (thin line) energy density spectra at selected gauges of shoreward propagating

waves for case 1C of Boers (1996).

445

selected wave gauges is indicated in Figure 4. Both the generation of higher harmonics and the transfer of446

energy towards low frequencies are properly predicted. Also, the energy loss at the mid- to high-frequency447

range due to wave breaking is resolved quite accurately. In general, the model is able to predict the primary448

characteristics of the spectral evolution, both in the shoaling region and the surf zone.449

Though the potential of the present low-order unstructured staggered mesh method is clearly demon-450

strated, the results can be further improved by using two vertical layers [46]. Extension of the unstructured-451
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mesh version of SWASH to include vertical resolution will be done in the future work.452

4.5. Runup of waves on a conical island453

In this last test case the runup of a solitary wave around a conical island is discussed. The experimental454

configuration of Briggs et al. [50] is selected and is depicted in Figure 7. Surface elevations were recorded455

using wave gauges at eight different locations as indicated in the figure. This benchmark is challenging,
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Figure 7: Schematic views of the conical island experiment. Plane view of the wave basin and the island (top panel) and side

view of the island along section A−A (bottom panel).

456

because of the wetting and drying cycles while waves run up and down on the island.457

The grid used to obtain accurate wave runup and inundation on the island contains approximately458

171,000 triangular cells and is locally refined near the island, see Figure 8. The largest grid size away from459

the island is 0.4 m, whereas the smallest size is around 0.01 m. Subsequently, a solitary wave with given460

height H was imposed at the western boundary.461

Three wave conditions are considered in the present study: H = 0.045d, H = 0.096d and H = 0.181d462

with d = 0.32 m the still water depth of the basin (cf. Figure 7). The corresponding cases were simulated463

with UnSWASH using the following settings. The initial time step was 0.001 s with the maximum CFL of464

0.8 for the first two cases, whereas for the last severe case they were 0.0005 s and 0.5, respectively. The465

simulation period was set to 25 s for all cases. Since wave breaking was observed on the lee side of the island466

for the case H = 0.181d, the HFA is applied accordingly.467
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Figure 8: Non-uniform mesh used for the conical island test case with local refinement towards the island.

Figure 9 provides a comparison between the model results and the measured data at the selected gauges.468

The observed surface elevations are very well predicted by the UnSWASHmodel. In particular, the computed469

arrival time and height of the incoming wave agrees with the measured data. There is, however, a phase470

shift observed in the peak at gauge 22, especially for the case H = 0.181d. This known issue can be resolved471

by including two vertical layers in the model. Finally, it is worth noting that the model results are consistent472

with previously obtained results for the structured mesh case [24]. The associated mesh is uniform with a473

grid size of 0.05 m and the number of grid cells is approximately twice as large as that of the unstructured474

grid.475

5. Conclusions476

An extension of the wave-flow model SWASH to unstructured triangular meshes has been discussed.477

The main motivation for the application of such meshes for the simulation of wave dynamics is the ease of478

local grid refinement. The covolume method has been adopted for the spatial discretization of the depth-479

integrated shallow water equations with the primitive variables. The velocity components normal to the480

cell faces are employed as the primary unknowns in the discretization. To account for wave dispersion the481

non-hydrostatic pressure is included.482

The covolume method has the great benefit of allowing to construct finite difference discretizations that483

mimic desirable properties of PDEs (e.g. topology, conservation, jump relation) while keeping the compu-484

tational stencil compact. This significantly improves both the robustness and the efficiency of SWASH. In485
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Figure 9: Comparison with the data of Briggs et al. (1995) for the runup on a conical island: H = 0.045d (left panel),

H = 0.096d (middle panel), and H = 0.181d (right panel). Time histories of surface elevation at selected gauges around the

island are shown. Dashed line: experimental data; solid line: UnSWASH.

addition, mimetic discretizations routinely enable physically meaningful results to be obtained on relatively486

coarse meshes.487

Still, the application of the covolume scheme is practically limited to Delaunay-Voronoi meshes, which488

may impede the user flexibility to generate adequate grids comprising the necessary refinements. However,489

the associated orthogonality requirement is found not to be a limiting factor in wave-related applications.490

This is explained by the fact that the required mesh resolution is reasonably non-uniform for the scale of491

wave dynamics across the entire domain.492

A robust and efficient upwind-biased scheme has been proposed. The scheme complies with the Rankine-493

Hugoniot jump relations and is specifically designed with a view to preserving the local momentum flux.494

This is crucial to the simulation of breaking waves and unsteady bores. This has been demonstrated by the495

dam break test case.496

The proposed method is generally first order accurate on non-uniform meshes. Despite this fact, the497

model is capable of reproducing essential wave processes, including shoaling, refraction, diffraction, nonlinear498

interactions, depth-induced breaking and wave runup, owing to the mimetic nature of applied discretizations499

and the use of locally fine grids. This has been verified by the three test applications presented in this paper.500
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Appendix A. Proof of momentum conservation501

The objective of this appendix is to demonstrate that recurrent relation (12) does not produce a momen-502

tum conservation error, given a uniform bed and a zero bed friction. Using Eq. (7), we obtain the following503

finite difference form504

∆sf
duf

dt
+

∆scL,f
AcL

[

Qk1

h̃f

(

uf − ucL,k1

)

+
Qk2

h̃f

(

uf − ucL,k2

)

]

· nf = − (PcR − PcL) (14)

where505

Pc =
1

2 h̃f

(

gh2

c + hcpc
)

is the depth-averaged total pressure at the circumcentre. Discrete momentum conservation can be expressed506

as the rate of change in the total amount of momentum hu within a control volume is due only to the net flux507

through the edges of the volume. Since the normal face velocity uf is the primary unknown, interpolation508

must be employed to obtain the momentum at a single location within the mesh. To this end, the mesh cell509

is treated as the control volume. Subsequently, we derive an equation for the cell-based momentum vector510

using Perot’s interpolation scheme (8). Finally, summation of its flux contributions over the cell faces must511

lead to a discrete equivalent of the momentum equation in divergence form, which completes the proof. This512

formal procedure of proof utilizes the geometric properties of the mesh and is also applicable to Cartesian513

staggered schemes (see, e.g. [14, 33]).514

First, Eq. (14) is rewritten as515

(∆scL,f +∆scR,f)
duf

dt
+ (∆scL,f ccL +∆scR,f ccR) · nf = − (PcR − PcL)

with516

cc =
1

Ac

∑

k∈Sc

αc,k

Qk

h̃f

(ûk − uf ) (15)

the cell-based discretization of the advection term evaluated for the two cells adjacent to face f . Note that517

the transported velocity ûk is interpolated from face normal components from the cell upwind of face k. As518

a consequence, ccR · nf = 0 if uf > 0, and likewise, ccL · nf = 0 if uf < 0. Next, the discretized equation is519

multiplied by the normal of the face nf and its length lf , and subsequently summed over the faces of cell c520

∑

f∈Sc

nf lf (∆scL,f +∆scR,f )
duf

dt
+

∑

f∈Sc

lf (∆scL,f ccL +∆scR,f ccR) · nfnf = −
∑

f∈Sc

nf lf (PcR − PcL)

We now demonstrate conservation of momentum by transforming the above equation into an equation521

for the cell-based momentum vector u. Each interior face is shared by two triangular cells of which one522

contributes to the cell under consideration. Furthermore, at the boundary face a flux of momentum is523

prescribed. First, the rate of change in momentum can be recasted as524

∑

f∈Sc

nf lf∆sc,f
duf

dt
=

d

dt

∑

f∈Sc

nf lf∆sc,fuf = Ac

duc

dt
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following from Eq. (8). This holds for all cells in the computational mesh.525

Next, the advective acceleration term can be rearranged with the aid of the following geometric identity526

∑

f∈Sc

lf∆sc,f nfnf = Ac I

with I the identity matrix. This identity follows from the divergence theorem [14]. Then, using Eq. (15),527

the advection term can be expanded as528

∑

f∈Sc

lf∆sc,f cc · nfnf = cc ·
∑

f∈Sc

lf∆sc,f nfnf = cc · IAc = Accc =
∑

k∈Sc

αc,k

Qk

h̃f

(ûk − uf )

which conserves momentum in the considered cell since αcR,k = −αcL,k at each interior face k. This implies529

that the sum of contributions to the left and right cells cancels the advective flux at face k. This holds for530

all cells except the boundary cells where the change in momentum is due to the fluxes across the boundary531

faces.532

Finally, the pressure term in the interior cell can be rewritten as533

∑

f∈Sc

nf lfPc = −Pc

∑

f∈Sc

nc,f lf = 0

by noting that the pressure gradient is aligned with the flow direction and the cell has a closed surface. In534

case the cell under consideration is a boundary cell, then535

∑

f∈Sc

nf lfPc =
∑

f∈Sc

nc,f lf Pf

with Pf the contribution to the prescribed momentum flux.536

In short, by rewriting the finite difference form (14) into a discrete equation in divergence form without537

introducing any other approximation, we have shown that it does not create or destroy momentum in each538

individual mesh cell of the computational domain. This implies that the computed amount of momentum539

can only change as a result of a non-zero net momentum flux over the boundary of the domain, a non-uniform540

bed, or a non-zero bed friction.541

Appendix B. Hydrostatic front approximation542

Due to coarse vertical resolutions some measures are required to properly approximate wave breaking.543

They are introduced with the HFA technique of Smit et al. [46]. In principle, to initiate the onset of the544

breaking process at low resolutions, a steep bore-like wave front is tracked and subsequently a hydrostatic545

pressure distribution is imposed locally. Furthermore, the HFA requires the inclusion of the diffusion term546

in momentum equation (4), as follows547

∂huf

∂t
+ · · · = · · · + [∇ · (νHFA h∇u)] · nf
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with548

νHFA = ℓ2

√

2

(

∂u

∂x

)2

+ 2

(

∂v

∂y

)2

+

(

∂u

∂y
+

∂v

∂x

)2

(16)

the horizontal viscosity coefficient and ℓ = µh the typical length scale of horizontal mixing which is related549

to a fraction of the local depth (µ < 1). The diffusion term is added locally once the HFA is activated (see550

[46] for details).551

The spatial discretization of momentum diffusion is in line with the one described in Fringer et al. [22].552

Eq. (6) is extended accordingly553

∆sf
dh̃fuf

dt
+ · · · = · · · + (∆scL,f dcL +∆scR,f dcR) · nf

where dc is the cell-based diffusion vector, and is approximated as follows554

dc =
1

Ac

∫

c

∇ · (νHFA h∇u) dA =
1

Ac

∮

∂c

νHFA h∇u · nc dl ≈
1

Ac

∑

k∈Sc

αc,k νHFA,k h̃k lk
ucR,k

− ucL,k

∆sk

with uc,k the cell-based velocity vector evaluated in cell c of face k by means of Eq. (8). Next, the derivatives555

in Eq. (16) are approximated in the two vertices of face k using Gauss’ divergence theorem applied on the556

centroid dual constructed by joining the circumcentres surrounding the vertex under consideration. Here,557

we make use of the velocity components u and v at the circumcentres. Finally, the viscosity coefficient at558

the face midpoint νHFA,k is approximated with the arithmetic averaging between the two vertices.559
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